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In [ ]: options(repr.plot.width=4, repr.plot.height=3)

Supervised learning

We are given training data 

X: independent variables, inputs, predictors, features
Y: dependent variables, outputs, response

 (usually)

regression: 
classification: 
structured prediction: More complicated high-dimensional spaces with dependent components (e.g. the space of
images or sentences)

We assume 

 is noise (includes randomness and approximations)

Independently and identically distributed (i.i.d.) according to some probability distrib. (e.g. Gaussian)

Given the training set , we want to estimate :

to study the relation between x and y
to make predictions of y’s for unobserved x’s

Good predictors can be hard to interpret

(X, Y ) = {( , ), ⋯ , ( , )}x1 y1 xN yN

x ∈ RP

y ∈ R
y ∈ {0, 1}

= f( ) +yi xi εi

ε

(X, Y ) f
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Parametric learning

Index functions  by a finite-dimensional parameter vector

E.g. linear regression

Parameters are coefficients of a hyperplane
Parameters have a clear interpretation
Can be a bad approximation of reality

Linear regression

via the lm function in R

In [ ]: library('ggplot2')
DataIncm <- read.table('Data/Income2.csv',header=T,sep=',')
ggplot(DataIncm) + geom_point(aes(x=Education,y=Income))

In [ ]: fit <- lm(Income ~ Education, DataIncm); fit

The first argument is a formula

takes the form response ~ predictors
response is a linear combination of predictors
above we have just one predictor: 

Second argument unnecessary if variables in formula exist in current environment

See documentation for other optional arguments

Can print fit:

In [ ]: fit

This is not all the information in fit (why?)

Try typeof(), class(), str()
Try plotting it

In [ ]: print.default(fit)

Observe fit contains the entire dataset!

Can disable with model = FALSE option

f

Education
Income = ⋅ Education + + ϵβ1 β0
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Can directly plot with ggplot :

In [ ]: plt1 <- ggplot(DataIncm, aes(x=Education, y = Income)) +
          geom_point(size=2, color='blue') +
          theme(text=element_text(size=10))

In [ ]: plt1 + geom_smooth(method='lm', se=FALSE, #Disable std. errors
                   color='magenta', size=2)

Can regress against Seniority

In [ ]: fit <- lm(Income ~ Seniority, DataIncm)

Can regress against both Education and Seniority

In [ ]: fit <- lm(Income ~ Education + Seniority, DataIncm)

+ does not mean input is sum of Educ. and Sen.

Rather: 

For the former, use I:

fit <- lm(Income ~ I(Education + Seniority), DataIncm)

Prediction

In [ ]: fit <- lm(Income ~ Education + Seniority, DataIncm)

How do we make predictions at a new set of locations? E.g. (15, 60) and (20, 160)?

In [ ]: pred_locn <- data.frame(Education=c(15,20), Seniority= c(60,160))
predict.lm(fit, pred_locn)

In [ ]: edu_pred <- 10:25
sen_pred <- seq(0,200,10)
pred <- data.frame(Education=rep(edu_pred, length(sen_pred)),
               Seniority=rep(sen_pred, each=length(edu_pred) ))
p_val <- predict.lm(fit, pred)
pred$p_val = p_val

Income = ⋅ Seniority + ⋅ Education + + εβ2 β1 β0

Income = ⋅ (Seniority + Education) + + εβ1 β0
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In [ ]: plt <- ggplot(DataIncm, aes(x=Education, y=Seniority,
                          color=Income))+
    geom_tile(data=pred, aes(x=Education, y=Seniority,
                                  color=p_val, fill=p_val)) +
    geom_point(size=1) + theme(text=element_text(size=10)) +
    scale_color_continuous(low='blue', high='red') +
    scale_fill_continuous(low='blue', high='red') +
    geom_point(shape=1,size=1,color='black') +
      guides(fill=FALSE) # Remove legend for 'fill'

In [ ]: plt

Specifying a model for lm

Symbol Meaning Example

+ Include variable x + y

: Interaction between vars x + y + z + x:z + y:z

* Variables and interactions (x + y) * z

^ Vars and intrcns to some order (x + y + z)^3

- Delete variable (x + y + z)^3 - x:y:z

poly Polynomial terms poly(x,3) + (x + y) * z

I New combination of vars I(x*y + z)

1 Intercept x - 1

See documentation and http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html (http://ww2.coastal.edu/kingw
/statistics/R-tutorials/formulae.html)

Generalized linear model

A linear model with Gaussian noise is often inappropriate. E.g.

response is always positive
count valued response
{0, 1} or binary-valued as in classification

A better model might be:

 is a ‘link’ function,  is no longer Gaussian

Can fit in R with glm() (see documentation)

response = g( ⋅ predicto ) + ε∑N
i=1 βi ri

g ε
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Nonparametric methods
No longer limit yourself to a parametric family of functions

Much more flexible

Often much better prediction

Complexity of  can grow with size of dataset

Often hard to interpret

k-nearest neighbors

Given training data 

Given a new  , what is the corresponding ?

Find the k-nearest neigbours of  . Then:

Classification: Predicted  is the majority class-label of the neighbors

Regression: Predicted  is the average of the ’s of the neighbors

3-nearest neighbors

(*An Introduction to Statistical Learning*, James, Witten, Hastie and
Tibshirani)

f

(X, Y )

x∗ y∗

x∗

y∗

y∗ y

lect9 http://127.0.0.1:8000/lect9.html?print-pdf

5 of 11 2/6/19, 8:00 PM



Complexity of decision boundary grows with size of training set: ‘Nonparametric’

Pros:

Very intuitive computational algorithm.
Very easy to ‘fit’ data (you don’t, you just store it)
Tends to outperform more complicated models.
Easy to develop more complicated extensions E.g. locally-adaptive kNN.
Exists theory for such models.

Cons:

Cost of prediction grows linearly with training set size (can be expensive for large datasets)
Tends to break down in high-dimensional spaces.
Exempler-based approaches are hard to interpret.
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10-nearest neighbors

(*An Introduction to Statistical Learning*, James, Witten, Hastie and
Tibshirani)
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(*An Introduction to Statistical Learning*, James, Witten, Hastie and
Tibshirani)

What distance function do we use? Typically Euclidean.
What k do we use? Typically 3, 5, 10

Usually chosen by cross-validation (more later)

Large k: smooth decision boundary

Small k: complex decision boundary (with local variations)

k is a measure of model-complexity

How do we perform model selection?

Do we prefer simple or complex models?

Bias-variance trade-off

Overly simple models

cause underfitting (or bias)
ignore important aspects of training data

Overly complex models

cause overfitting (or variance)
can be overly sensitive to noise in training data
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Complex models reduce training error, but generalize poorly.

Cross-validation

How do we estimate generalization ability? Create an unseen test dataset.

Cross-validation:

Split your data into two sets, a training and test dataset.
Fit all models on training set.
Evaluate all models on test set.
Pick best model.

Choosing k by cross-validation
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Often 50-50 or 70-30 training-test splits are used

Too small a test set:

Noisy estimates of generalization error

Too small a training set:

Wasting training data
Model selected using small training set may be simpler that model relevant to the entire training set

k-fold crossvalidation

Split your data into k-blocks.

For i = 1 to k:

Fit algorithm on all except block i.
Test algorithm on block i. Overall generalization error is the average of all errors.

Can use larger training sets
Can get confidence intervals on generalization error.

k = N: leave-one-out cross-validation
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k-fold crossvalidation

(*An Introduction to Statistical Learning*, James, Witten, Hastie and
Tibshirani)
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