lect6 http://127.0.0.1:8000/lect6.html

Lecture 6: Functions in R

STAT598z: Intro. to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

In [1: options(repr.plot.width=3, repr.plot.height=3)

Why functions?
R comes with its own suite of built-in functions

® An important part of learning R is learning the vocabulary, e.g. http://adv-r.had.co.nz/Vocabulary.html (http://adv-
r.nad.co.nz/Vocabulary.html)

Non-trivial applications require you build your own functions

® Reuse the same set of commands

® Apply the same commands to different inputs
® Cleaner, more modular code

® Easier testing/debugging

Creating functions

Create functions using function :

my func <- function(formal arguments) body
The above statement creates a function called my func
formal_arguments: comma separated names
® describe inputs my func expects
function_body: a statement or a block

® describes what my func does with inputs

Example functions

In [1: my add <- function(x,y) x+y

10of8 1/23/19, 9:20 PM

lect6

20f8

In []:

In []:

In []:

In

In

In

In

[

]:

]:

]:

]1:

In []:

In [1:

In []:

gauss_pdf <- function(ip, mn, vr, 1g pr) {

http://127.0.0.1:8000/lect6.html

Calculate the (log)-probability of Gaussian with mean m and variance vr

rslt <- -((ip-mn)"2)/(2*vr)
rslt <- rslt - 0.5*%log(2*pi*vr)

Do we want the prob or the log-prob?
if(lg pr == F) rslt <- exp(rslt)
return(rslt)

}
print(gauss pdf(1,0,1,F)); dnorm(1l, log=F)

normalize mtrx <- function(ip mat, row) {
Normalizes rows to add up to one if row = TRUE
Else normalizes columns
if(row) { # We want the rows to add up to one
rslt <- ip_mat / rowSums(ip_mat)
} else { # We want the columns to add up to one
rslt <- t(t(ip_mat) / colSums(ip _mat))
}

return(rslt) # Works even without this
}

mtrx <- matrix(runif(9), nrow=3); mtrx

n_mtrx <- normalize mtrx(row = TRUE, ip mat = mtrx); n_mtrx

n_mtrx <- normalize mtrx(TRUE, mtrx)

n_mtrx <- normalize mtrx(TRUE, ip = mtrx) # Partial matching

gauss_pdf is an object:

typeof(gauss _pdf)
class(gauss_pdf)

str(gauss_pdf)

Expects three numerics and a boolean input, and returns a numeric

A function can accept/return any object:

® this includes other functions
® multiple return values can be organized into vectors/lists/dataframes

Can add some defaults and checks

1/23/19, 9:20 PM

lect6 http://127.0.0.1:8000/lect6.html

In []: normalize mtrx <- function(ip mat, row = TRUE) {

Normalizes columns to add up to one if row = FALSE
If row = TRUE or row not specified, normalizes columns
if(!is.matrix(ip _mat)) {

warning("Expecting a matrix as input");

return (NULL)
}
You can define objects inside a function
You can even define other functions
rslt <- if(row) ip mat / rowSums(ip_mat) else

t(t(ip_mat) / colSums(ip _mat))

In [1: n_mtrx <- normalize mtrx(mtrx)

In []: gauss pdf <- function(ip, mn=0, vr=1, 1g pr=T) {
Calculate the (log)-probability of Gaussian with mean m and variance vr
if(vr <= 0) {
warning("Expect a positive variance");
return(NULL)

}
rslt <- -((ip-mn)"2)/(2*vr)
rslt <- rslt - 0.5*log(2*pi*vr)

Do we want the prob or the log-prob?
if(lg pr == F) rslt <- exp(rslt)
rslt

}

In [1: pr <- gauss pdf(1,0,1); print(exp(pr))

In [1: my add <- function(x,y) {return(x+y)}

In []: my mul <- function(x,y) x*y

In []: my _gen <- function(ip fun, x) function(z) ip fun(x,z)
In [1: inc3 <- my _gen(my_add,3)

In [1: inc3(5)

Argument matching
Proceeds by a three-pass process

® Exact matching on tags
® Partial matching on tags: multiple matches gives error
® Positional matching

Any remaining unmatched arguments triggers an error

In []: mean(,TRUE,x=c(1:10,NA)) # From Advanced R, Hadley Wickham

3o0f8 1/23/19, 9:20 PM

lect6 http://127.0.0.1:8000/lect6.html

Arguments via ‘...’
‘... allows any number of arguments
Useful when passing arguments to other functions:

pick func <- function (two arg flag, ...) {
Function w/ 2 arguments
if(two _arg flag) two arg fun(...) else
Function w/ 3 arguments
three arg fun(...)

Example: Recursive addition via functional programming

In [1: recurse sum <- function(x = TRUE, ...) # Cute but inefficient
if (isTRUE(x)) 0 else x + recurse_sum(...)

In [1: recurse sum(1,2,3,5,6,7) # Don’t include TRUE in the input!

Note the use of isTRUE() above

Scoping rules
We saw a function recurse_sum() that called itself

This raises a few questions:

® what objects are visible to a function?
® what happens when a function makes assignments?

R decides this by following a set of scoping rules

R follows what is called lexical scoping

Function objects have attributes
® formals: its arguments
® body: its code
® environment: what objects exist
In [1: body(recurse sum)

In [1: formals(recurse sum)

In []: environment(recurse sum)

40f8 1/23/19, 9:20 PM

lect6

50f8

http://127.0.0.1:8000/lect6.html

environment: data-structure that binds names to values

Determines scoping rules in R

Environments in R

An environment is a kind of named list of symbol-value pairs
In []: x <- 5; env <- environment(); env
In [1: env$x # env is now a snapshot of the environment when it was created
In []: x <- 10; env$x # actually more like a phonebook
In []: funcl <- function() {my local <- 1; environment()}
In []1: local env <- funcl()
In [1: local env$my local

In [1: parent.env(local env) # Each environment has a parent environment

Lexical scoping:

® To evaluate a symbol R checks current environment

® |f not present, move to parent environment and repeat

® Value of the variable at the time of calling is used

® Assignments are made in current environment (but see <<-, the super-assignment operator)

Here, environments are those at time of definition

Where the function is defined (rather than how it is called) determines which variables to use

Values of these variables at the time of calling are used

Scoping in R

In []: x<-5
funcl <- function(x) {x + 1}

In [1: funcl(1l)

In []: x <- 5; func2 <- function() {x + 1}

1/23/19, 9:20 PM

lect6 http://127.0.0.1:8000/lect6.html

In [1: func2(); x
In []1: x <- 10; func2() # use new x or x at the time of definition?

In[]: x<-1; y <- 10
func3 <- function() {x <- x + 1; y <<- y + 1; environment()}
env <- func3()

In [1: c(x, y, env$x, envs$y)

In []: funcl <- function(x) {x + 1}
func4 <- function(x) {funcl(x)}

In []: func4(2)

In []: x <- 5; func2 <- function() {x + 1}
func5 <- function(x) {x <- 10; func2()}

In []: func5(2) # func2 uses x from calling or global environment?

Scoping in R
For more on scoping, see (Advanced R, Hadley Wickham)
The bottomline

® Avoid using global variables
® Always define and use clear interfaces to functions
® Warning: we're always implicitly using global objects in R

'+’ <- function(x,y) x*y #0pen new RStudio session!
2 + 10

Lazy evaluation: R evaluates arguments only when needed

Can also cause confusion
In [1: func <- function(x,y) if(x) 2*x else x + 2*y
In []: func(l, {print("Hello"); 5})

In []: func(0, {print("Hello"); 5})

6 of 8 1/23/19, 9:20 PM

lect6 http://127.0.0.1:8000/lect6.html

Some comments on the homework
functions: modular blocks of code that map input arguments to output (and sometimes have side-effects e.g. plotting)
Should not use global variables!

® Except in very special situations, this is just laziness
® Will eventually cause you trouble (and cost you points)

Ideally, instead of submitting a script, wrap it up in a function Assigning variables won’t mangle someone else’'s namespace

Homework 1A
Lots of variable assignments
result <-

Better:

homework _la <- function(ip data) {
Helpful comment
Lots of variable assignments
result <-

}

homework_la(USArrests)

Functions should produce same output for same input, irrespective of values of non-input variables
Some exceptions are functions

® that are random (but see set.seed())
® that read files, accept user input
® that read date/time/local system information

my func <- function(mf argl, mf arg2) {
Stuff not involving information other than
mf_arg's

}

® Give your function an informative name
® Need not prefix all local variables, but helps against typos
® Arguments are placeholders for actual supplied inputs

7 of 8 1/23/19, 9:20 PM

lect6 http://127.0.0.1:8000/lect6.html

If you're going to change R datasets, make local copies
Bad:

USArrests['Indiana'] <- USArrests['Indiana'] + 1
What happens next time you run your script?
What if you want the original value?

Good:

my USArrests <- USArrests
my USArrests['Indiana'] <- USArrests['Indiana'] + 1

Bad: Hacking away at the console and later trying to reconstruct how you got your output
Good: Work with a text file in the editor

® This allows you to see the structure of your program

® Encourages use of functions

® Encourages comments

® Maybe start by thinking of your plan of attack, write down a skeleton of your program and then fill it in?
® Bad idea to dive into details without a broader plan

Use the console to explore outcome of one line, check help/syntax, but once successful, add line to editor

RStudio shortcuts

While working at the editor, <Ctrl><Enter>

® executes selected lines
® executes current line if none are selected

<Ctrl><Shift><Enter>: executes all lines

<Ctrl><1> and <Ctrl><2>: Move cursor to editor or console

Also <Tab> autocompletes, <Up> moves through command history, and <Ct r1><Up> autocompletes from command history

For more:

® <ALT><SHIFT><k> (Tools>Keyboard Shortcuts Help)
® https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts (https://support.rstudio.com/hc/en-
us/articles/200711853-Keyboard-Shortcuts)

8 of 8 1/23/19, 9:20 PM

