lectb http://127.0.0.1:8000/lect5.html

Lecture 5: Flow control

STAT598z: Intro. to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

In [1: options(repr.plot.width=3, repr.plot.height=3)

Statements in R

® separated by semicolons or newlines
® grouped by curly braces ‘{" and ‘}’ into blocks

semicolons indicate the end of a statement

newlines not necessarily

Whenever R encounters a syntactically correct statement it executes it and a value is returned

The value of a block is the value of the last statement

if statements

Allow conditional execution of statements

if(condition) {
statement blockl # executed if condition is true
} else { # else 1is optional
statement_block2
}

The value of condition is coerced to logical

® |f integer or numeric, 0 is FALSE , rest are true
® Using other modes isn’t really recommended

If the value has length more than one, only the first is used

1of6 1/21/19, 7:26 PM

lectb http://127.0.0.1:8000/lect5.html

In [1: p <- rnorm(1)

if(p>0) {
p_logp <- p * log(p)
} else {

p_logp <- 0 # Assuming p >= 0

}
print(c(p,p_logp))

Since else is optional, don’t put it on its own line
Can disperse with curly braces for one-line statements:
if(condition) statementl else statement2

if/else statements can be nested:

if(conditionl) {
statementsl
} else if(condition2) {
statements2
} else {
statements3

}

In [1: p <- rnorm(1)

if(p>0) {
p_logp <- p * log(p)
} else {

p_logp <- 0 # Assuming p >= 0

}
print(c(p,p_logp))

In []: if(p >0) p_logp <- p * log(p) else p logp <- O

if is a function that returns values, so we can also write
In []: p_logp <- if(p >0) p * log(p) else O

In []1: # Less clear:
p_logp <- 'if'(p >0, {p * log(p)}, 0)

Logical operators
! logical negation
& and &&: logical ‘and’ | and | | : logical ‘or’

& and | perform elementwise comparisons on vectors

20f6 1/21/19, 7:26 PM

lectb http://127.0.0.1:8000/lect5.html

&&and || :

® evaluate from left to right

® |ook at first element of each vector

® evaluation proceeds only until the result is determined ("lazy evaluation")
® used inside if conditions

Also useful are xor (), any (), all()
In []: c(TRUE, TRUE) & c(TRUE, FALSE)
In [1: c(TRUE, TRUE) && c(TRUE, FALSE) # Unusual to see code like this
In []: NA | c(TRUE, FALSE)
In []: TRUE && (pi >1) && {print("Hello"); TRUE}
In [1: TRUE && (pi == 3.14) && {print("Hello"); TRUE}
In []: c(TRUE, TRUE) & c(TRUE, FALSE) & {print("Hello!"); TRUE}

In []1: c(TRUE, TRUE) & c(FALSE, FALSE) & {print("Hello!"); TRUE}

We will look at lazy evaluation later

Explicit looping: for (), while() and repeat()

for(elem in vect) { # Can be vector or list over
Do stuff with elem # successive elements of vect

}

In[]: x<-0
for(ii in 1:50000) x <- x + log(ii) # Horrible

In [1: x <- sum(log(1:50000)) # Much more simple and efficient!
In [1: system.time({x<-0; for(i in 1:50000) x <- x + log(i)})

In []: system.time(x <- sum(log(1:50000)))
An aside on increasing vector lengths

In [1: system.time({x<-0; for(i in 1:10000) x[i] <- i})
mean (X)

30f6 1/21/19, 7:26 PM

lectb http://127.0.0.1:8000/lect5.html

In [1: system.time({x<-rep(0,10000); for(i in 1:10000) x[i] <- i })
mean (x)

Vectorization

Vectorization allows concise and fast loop-free code

Example: Entropy H(p) = — Eﬁl D; logpi of a prob. distrib.
In[]: p <- c(.0,.5,.5)
In []: H<- -sum(p * log(p)); print(H) # Vectorized but wrong (p[i] == 07)

In []: H<-0
for(ii in 1:length(p)) # Correct but slow
if(p[ii] > 0) H <- H - p[ii] * log(pl[iil)

In []: pos <- p > 0; sum(p[pos])

Vectorization isn’t always possible though

® when contents of the loop are complicated
® when future iterations depend on the past
® sometimes the cost in human-time of complicated vectorization isn’t worth the saved CPU cycles

See the third and fourth Circles in The R Inferno, Patrick Burns

"Premature optimization is the root of all evil" -Donald Knuth

Vectorization via ifelse()
ifelse() has syntax:

ifelse(bool vec, true vec, false vec)
Returns a vector of length equal to bool_vec whose

e ;" elementis true vec[i] if bool vec[i] is TRUE
o it" glementis false vec[i] ifbool vec[i] is FALSE
® true vec and false_ vec are recycled if necessary

Entropy revisited:

In []: H<- -sum(ifelse(p > 0, p * log(p), 0))

4 0f6 1/21/19, 7:26 PM

lectb http://127.0.0.1:8000/lect5.html

ifelse() has syntax:
ifelse(bool vec, true vec, false vec)

ifelse is not lazy, usually evaluates all true vec and false vec (unless bool_vec is all TRUE or FALSE)

In []: x <- c(6:-4)
sqrt(x) # gives warning

In []: sqrt(ifelse(x >= 0, x, NA)) # no warning

In [1: ## Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

| prefer to subset vectors

While loops

while(condition) {
stuff # Repeat while condition evaluates to TRUE

}

If stuff doesn’t affect condition , we loop forever.

Then, we need a break statement. Useful if many conditions

while(TRUE) { # Or use ‘repeat { ... }’
stuffl
if(conditionl) break
stuff2
if(condition2) break

}

In[]: i<-4
while(1 > 0) {
print(i)
i<-1i-1

}

In []: i1i<-5
while(i <- 1 - 1) { # while condition has a ‘side effect’
print(i) # Not recommended

}

50f6 1/21/19, 7:26 PM

lectb

6 of 6

In[]: i<-4

while({ print(i); i <-1i - 1}) {3

Correct but ridiculous

Might be useful if the block is a function

break(), next() and switch()

break() transfers control to first statement outside loop
next () halts current iteration and advances looping index
Both these commands apply to the innermost loop

Useful to avoid writing up complicated conditions

switch() is another potentially useful alternative to if

See documentation (I don’t use it much)

The *apply family

Useful functions for repeated operations on vectors, lists etc.

Note (Circle 4 of The R inferno):

® These are not vectorized operations but are loop-hiding
® Cleaner code, but comparable speeds to explicit loops

Calc. mean of each element of my list
rslt list <- lapply(my list, FUN = mean)

http://127.0.0.1:8000/lect5.html

Stackexchange has a nice summary (http:/stackoverflow.com/questions/3505701/r-grouping-functions-sapply-vs-lapply-vs-

apply-vs-tapply-vs-by-vs-aggrega)

The plyr package (discussed later) is nicer

1/21/19, 7:26 PM

