lect3

1of6

http://127.0.0.1:8000/lect3.html?print-pdf

LECTURE 3: DATA STRUCTURES IN R (contd)

STAT598z: Intro. to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

In [1: options(repr.plot.width=3, repr.plot.height=3)

SOME USEFUL R FUNCTIONS

seq(), seq_len(), min(), max(), length(), range(),
any(), all()

Comparison operators:

Logical operators:

& , ||, ', &, |, xor()

More on coercion:

is.logical(),is.integer(),is.double(),is.character()
as.logical(),as.integer(),as.double(),as.character()

Coercion often happens implicitly in function calls:

In [1: sum(rnorm(10) > 0)

Lists (generic vectors) in R
Elements of a list can be any R object (including other lists)

Lists are created using list() :

In []: car <- list("Ford", "Mustang", 1999L, TRUE); length(car)

1/14/19, 9:07 PM

lect3

20f6

In []: is.list(car)

Can have nested lists:

In [1: # car, house, cat and sofa are other lists

house <- "Apartment";

cat <- list("Calico", "Flopsy", 3L);

sofa <- "Red"

http://127.0.0.1:8000/lect3.html?print-pdf

possessions <- list(car, house, cat, sofa, "3000USD")

Or lists containing functions:

In []: mean_ list <- list(mean, "Calculates mean of input");

Listsin R
Elements of a list can be anything (including other lists)
Lists are vectors (but not "atomic vectors")

See: is.vector(), is.list(), is.atomic()

In []: car

What does concatenating lists do? E.g. c(car, house)

What does concatenating a list with a vector do?

What does unlist () do?

The str() function

Just as with vectors, can apply typeof () and class()

Another very useful function is str()

Provides a summary of the R object
In [1: str(car)

In []: people <- c("Alice", "Bob", "Carol")
str(people)

1/14/19, 9:07 PM

lect3 http://127.0.0.1:8000/lect3.html?print-pdf

Indexing elements of a list

Use brackets [] and double brackets [[]1]

Brackets [] return a sublist of indexed elements
In []: car[l]

In []: typeof(car[l])

Double brackets [[]] return element of list
In []: car[[1]]

In []: typeof(car[[1l]])

Vector in double brackets recursively indexes list
In []: possessions[[1]11[[1]]

In []: possessions[[c(1,1)]]

Named lists

Can assign names to elements of a list
In [1: names(car) <- c("Manufacturer", "Make", "Year", "Gasoline")

In [1: car
Equivalently, on definition
In []: car <- list("Manufacturer" = "Ford", "Make" = "Mustang",

"Year" = 1999, "Gasoline" = TRUE)

See also setNames ()

Accessing elements using hames
In [1: car[c("Manufacturer", "Make")] # A two-element sublist

In []: car[["Year"]] # A length-one vector

30f6 1/14/19, 9:07 PM

lect3

4 0of 6

In [1: car$Year # Shorthand notation

In []: car$year # R is case-sensitive!

Names

The names() function can get/set names of elements of a list
In []: names(car) # Returns a character vector

In []: names(car)[4] <- "Gasoline"; names(car)

Names need not be unique or complete

Can remove names using unname ()

Can also assign names to atomic vectors

Object attributes

names () is an instance of an object attribute

These store useful information about the object

Get/set attributes using attributes()

In []: attributes(car)

Get/set individual attributes using attr()

Object attributes

Other common attributes: class, dim and dimnames

Many have specific accessor functions e.g. class() ordim()

You can create your own

® Warning: careful about the effect of functions on attributes

http://127.0.0.1:8000/lect3.html?print-pdf

1/14/19, 9:07 PM

lect3 http://127.0.0.1:8000/lect3.html?print-pdf

Matrices and arrays
Are two- and higher-dimensional collections of objects

These have an appropriate dim attribute

In [1: my mat <- 1:6 # vector
my_ mat

In [1: dim(my mat) <- c(2,3) # 2 rows and 3 columns
print(my _mat)

Equivalently

In [1: my mat <- matrix(0 , nrow = 2, ncol=3) # ncol is redundant
my mat

Arrays work similarly

In [1: my arr <- array(l : 8, c(2,2,2)); print(my_arr)

Matrices and arrays

Useful functions include

® typeof(), class(), str()

® dim(), nrow(), ncol()

® is.matrix(), as.matrix(),

® dimnames(), rownames(), colnames()

In [1: dimnames(my mat) <- list(c("r1", "r2"), c("cl", "c2", "c3"))
print(my mat);my mat['rl','c2']

A vector/list is NOT an 1-d matrix (no dim attribute)

In []: dis.matrix(1 : 6)

Use drop () to eliminate empty dimensions

In [1: my mat <- array(l : 6, c(2,3,1)) # dim(my _mat) is (2,3,1)
print(my _mat)

In [1: my _mat <- drop(my _mat) # dim is now (2,3)
print(my mat)

50f6 1/14/19, 9:07 PM

lect3 http://127.0.0.1:8000/lect3.html?print-pdf

Indexing matrices and arrays

In [1: print(my _mat); my mat[2,3] # Again, use square brackets

Excluding an index returns the entire dimension
In [1: my mat[2,]

In [1: my arr[l,,1] # slice along dim 2, with dims 1, 3 equal to 1

Usual ideas from indexing vectors still apply

In [1: print(my _mat[,c(2,3)1)

Column-major order

We saw how to create a matrix from an array

In [1: my mat <- (matrix(l : 6, nrow = 3, ncol = 2)); print((my mat)); print(t(my mat)
)

In R matrices are stored in column-major order (like Fortran , and unlike C and Python)

In [1: print(my mat[1,2])

Recycling

Column-major order explains recycling to fill larger matrices
In []: ones <- matrix(1l, nrow = 3, ncol = 3); print(ones)
In [1: my seq <- matrix(c(1,2,3), nrow = 3, ncol = 3); print((my_seq))

In [1: print(t(t(my_seq) + c(.1,.2,.3)))

6 of 6 1/14/19, 9:07 PM

