
Lecture 2: Data Structures in R

STAT598z: Intro. to computing for statistics

Vinayak Rao

Department of Statistics, Purdue University

The R programming language
From the manual,

R is a system for statistical computation and graphics
R provides a programming language, high level graphics,interfaces to other languages and debugging facilities

It is possible to go far using R interactively

However, we will also study the language with the goals of

writing good software
allowing easy reproducibility of our analyses

‘Everything in R is an object’

An object consists of a symbol (name) and a value

The function class() returns the object’s class
Useful for object-oriented programming E.g. Polymorphism lets the same function (print, plot) do different things to
different objects

Also relevant: typeof(), mode() and storage.mode()

R types
typeof() gives the type or internal storage mode of an object

Common types include:

atomic vectors: “logical”, “integer”, “double”, “complex”, “character”, “raw”
list: Various useful data-structures
closure: Functions
symbol: Variable names
Miscellaneous: Various internal and advanced types

lect2 http://127.0.0.1:8000/lect2.html?print=pdf

1 of 6 1/9/19, 11:11 PM

Atomic vectors
Informally, often just called ’vectors’

Contiguous collections of objects of the same type

(Contiguous: stored sequentially in memory)

Common types include: “logical”, “integer”, “double”, “complex”, “character”, “raw”

R has no scalars, just vectors of length 1

Creating length one vectors

In []: age <- 15 # Length 1 vector

In []: name <- 'Bob'

In []: old_enough <- age >= 18 #old_enough <- FALSE

In []: print(name)

In []: old_enough

Comments:

age, name, and old_enough are variable names
‘ <- ’ is the assign operator
‘ = ’ usually works but is not recommended

In []: 16 -> age # Valid, but harder to read

In []: typeof(age) # Note: age is a double

In []: class(age)

In []: typeof(name)

In []: class(name)

In []: age <- 19L
typeof(age)

General vectors:

The c() function (concatenate) creates vectors

lect2 http://127.0.0.1:8000/lect2.html?print=pdf

2 of 6 1/9/19, 11:11 PM

In []: people <- c("Alice", "Bob", 'Carol') # single/double quotes

In []: years <- 1991 : 2000 # Watch out for: years <- 2000:1991

In []: even_years <- (years %% 2) == 0

In []: class(people)

In []: typeof(years)

In []: is.vector(even_years)

Indexing elements of a vector

Use brackets [] to index subelements of a vector

First element of a vector is indexed by 1

In []: people[1] # First element is indexed by 1

In []: years[1 : 5] # Index with a subvector of integers

In []: years[c(1, 3, length(years))]

Negative numbers exclude elements

In []: people[-1] # All but the first element

In []: years[c(-1, - length(years))] #All but first and last elementts

In []: years[- c(1,length(years))] # Equivalently

Index with logical vectors

In []: even_years # Same as print(even_years)

In []: years[even_years] # Index with a logical vector

Example

Sample 100 Gaussian random variables and find the mean of the positive elements

In []: xx <- rnorm(100, 0, 1) # Sample 100 Gaussians
indx_xx_pos <- (xx > 0) # Is this element positive

In []: xx_pos <- xx[indx_xx_pos] # Extract positive elements

lect2 http://127.0.0.1:8000/lect2.html?print=pdf

3 of 6 1/9/19, 11:11 PM

In []: xx_pos_mean <- mean(xx_pos) # calculate mean

More terse:

In []: xx <- rnorm(100, 0, 1) # Sample 100 Gaussians

In []: xx_pos_mean <- mean(xx[xx > 0]) # calc. mean of positives

In []: xx_pos_mean

Replacing elements of a vector

Can assign single elements

In []: people[1] <- 'Dave'; print(people)

or multiple elements:

In []: years[even_years] <- years[even_years] + 1; print(years)

or assign multiple elements a single value (more on this when we look at recycling)

In []: years[-c(1,length(years))] <- 0; print(years)

How about years <- 0?

In []: years[] <- 0 # Maintains old vector

Coercion

What if we assign an element a value of the wrong type?

In []: vals <- 1 : 3
typeof(vals)

In []: vals[2] <- 'two'; print(vals)
typeof(vals)

R will coerce the vector to the more flexible type

In increasing flexibility: logical, integer, double, and character

The c() operator does the same

lect2 http://127.0.0.1:8000/lect2.html?print=pdf

4 of 6 1/9/19, 11:11 PM

In []: stuff <- c(TRUE , 3L, 3.14, 'pi')
stuff

In []: typeof(stuff)

Use lists if you really wanted a heterogeneous collection

Objects can also be coerced into simpler ones if the context demands

In []: as.integer(3.4)

In []: 1:5.5

More on the c() operator

Atomic vectors are always flat, even for nested c() operators

Example from Advanced R, Hadley Wickham:

In []: c(1, c(2, c(3, 4)))

A vector of vectors is still just a vector

Use lists/matrices/arrays if you want nested structure

What if we assign to an element outside the vector?

In []: years[length(years) + 1] <- 2015

In []: length(years); years

We have increased the vector length by 1

In general, this is an inefficient way to go about things

Much more efficient is to first allocate the entire vector

In []: vals <- 1 : 3
typeof(vals)

In []: vals[6] <- 6L

In []: print(vals)

Also get NAs if we access elements outside the range of the vector

lect2 http://127.0.0.1:8000/lect2.html?print=pdf

5 of 6 1/9/19, 11:11 PM

NA (Not available)

NA is a length 1 constant to handle missing values

Different from NaN (not a number), which results from e.g. dividing 0 by 0

NA can be coerced into any of the earlier data types

A useful command is is.na()

Vector operations and recycling

Unary transformations to a vectors: mean, sum, power etc

Binary operations are usually elementwise

What if vectors have different lengths?

Recycle: repeat shorter vector till the lengths match

Very convenient, but can allow bugs to remain undetected

R gives a warning if longer length is not multiple of shorter

Recycling

In []: val <- 1 : 6
val + 1

In []: val + c(1,2)

lect2 http://127.0.0.1:8000/lect2.html?print=pdf

6 of 6 1/9/19, 11:11 PM

