
lecture 19: monte carlo methods
STAT 598z: Introduction to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

April 3, 2019

Monte Carlo integration

We want to calculate integrals/summations

• oǒten expectations w.r.t. some probability distribution p(x)

µ := Ep[f] =
∫
X
f(x)p(x)dx

1/16

Monte Carlo integration

We want to calculate integrals/summations

• oǒten expectations w.r.t. some probability distribution p(x)

µ := Ep[f] =
∫
X
f(x)p(x)dx

What is the prob. a game of patience (solitaire) is solvable?

P(Solvable) = 1
|Π|

∑
Π

1(Π is solvable)

1/16

Monte Carlo integration

We want to calculate integrals/summations

• oǒten expectations w.r.t. some probability distribution p(x)

µ := Ep[f] =
∫
X
f(x)p(x)dx

If we drop 3 points on the plane, each Gaussian distributed, what
is average the area of the resulting triangle?

E[A] =
∫
A(x1, x2, x3)p(x1)p(x2)p(x3)dx1dx2dx3

1/16

Monte Carlo integration

We want to calculate integrals/summations

• oǒten expectations w.r.t. some probability distribution p(x)

µ := Ep[f] =
∫
X
f(x)p(x)dx

For dataset (X, y), what is is average loss if you randomly choose
a weight-vector according to some distribution (e.g. rnorm)?

Ew[L(X, y)] =
∫
(y− wTX)2p(w)dw

1/16

Monte Carlo integration

We want to calculate integrals:

µ := Ep[f] =
∫
X
f(x)p(x)dx

Sampling approximation: rather than visit all points in X ,
calculate a summation over a finite set.

Monte Carlo approximation:

• Obtain points by sampling from p(x)

xi ∼ p

µ̂ ≈ 1
N

N∑
i=1

f(xi)

2/16

Monte Carlo integration

We want to calculate integrals:

µ := Ep[f] =
∫
X
f(x)p(x)dx

Sampling approximation: rather than visit all points in X ,
calculate a summation over a finite set.

Monte Carlo approximation:

• Obtain points by sampling from p(x)

xi ∼ p

µ̂ ≈ 1
N

N∑
i=1

f(xi)

2/16

Monte Carlo integration

Is this a good idea?

• Very simple
• Unbiased

If xi ∼ p,

Ep[µ̂] = Ep

[
1
N

N∑
i=1

f(x)
]
=
1
N

N∑
i=1

Ep[f] = µ Unbiased estimate

Varp[µ̂] =
1
NVarp[f], Error = StdDev ∝ N−1/2

3/16

Monte Carlo integration

Is this a good idea?

• Very simple
• Unbiased

If xi ∼ p,

Ep[µ̂] = Ep

[
1
N

N∑
i=1

f(x)
]
=
1
N

N∑
i=1

Ep[f] = µ Unbiased estimate

Varp[µ̂] =
1
NVarp[f], Error = StdDev ∝ N−1/2

3/16

Monte Carlo integration

Is this a good idea?

• Very simple
• Unbiased

If xi ∼ p,

Ep[µ̂] = Ep

[
1
N

N∑
i=1

f(x)
]
=
1
N

N∑
i=1

Ep[f] = µ Unbiased estimate

Varp[µ̂] =
1
NVarp[f], Error = StdDev ∝ N−1/2

3/16

Monte Carlo integration

Is this a good idea?

• In low-dims, use numerical methods like quadrature
• In high-dims, numerical methods become infeasible

E.g. Simpson’s rule in d-dimensions, with N grid points:

error ∝ N−4/d

Monte Carlo integration:

error ∝ N−1/2

Independent of dimensionality!

4/16

Monte Carlo integration

Is this a good idea?

• In low-dims, use numerical methods like quadrature
• In high-dims, numerical methods become infeasible
E.g. Simpson’s rule in d-dimensions, with N grid points:

error ∝ N−4/d

Monte Carlo integration:

error ∝ N−1/2

Independent of dimensionality!

4/16

Monte Carlo integration

Is this a good idea?

• In low-dims, use numerical methods like quadrature
• In high-dims, numerical methods become infeasible
E.g. Simpson’s rule in d-dimensions, with N grid points:

error ∝ N−4/d

Monte Carlo integration:

error ∝ N−1/2

Independent of dimensionality!

4/16

Monte Carlo integration

Is this a good idea?

• In low-dims, use numerical methods like quadrature
• In high-dims, numerical methods become infeasible
E.g. Simpson’s rule in d-dimensions, with N grid points:

error ∝ N−4/d

Monte Carlo integration:

error ∝ N−1/2

Independent of dimensionality!

4/16

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.

5/16

http://boallen.com/random-numbers.html

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.

5/16

http://boallen.com/random-numbers.html

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.

• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.

5/16

http://boallen.com/random-numbers.html

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.

• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.

5/16

http://boallen.com/random-numbers.html

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html

• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.

5/16

http://boallen.com/random-numbers.html

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.

5/16

http://boallen.com/random-numbers.html

Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

set.seed(1)

• Careful with batch/parallel processing.
5/16

http://boallen.com/random-numbers.html

Generating random variables

In R we generate uniform random variables via runif

Additional functions include
rnorm(), rgamma(), rexp(), sample() etc.

In theory, we can generate any other random variable by
transforming a uniform (or any other) random variable:

u ∼ Unif(0, 1), x = f(u)

In practice, finding this f is too hard. Need other approaches.

There is a whole subfield of statistics addressing this.

6/16

Generating random variables

In R we generate uniform random variables via runif

Additional functions include
rnorm(), rgamma(), rexp(), sample() etc.

In theory, we can generate any other random variable by
transforming a uniform (or any other) random variable:

u ∼ Unif(0, 1), x = f(u)

In practice, finding this f is too hard. Need other approaches.

There is a whole subfield of statistics addressing this.

6/16

Generating random variables

In R we generate uniform random variables via runif

Additional functions include
rnorm(), rgamma(), rexp(), sample() etc.

In theory, we can generate any other random variable by
transforming a uniform (or any other) random variable:

u ∼ Unif(0, 1), x = f(u)

In practice, finding this f is too hard. Need other approaches.

There is a whole subfield of statistics addressing this.

6/16

Examples of Monte Carlo sampling

x, y are a pair of dice. What is p(x, y)?

What is E[min(x, y)] =
∑6

i=1
∑6

j=1min(x, y)p(x, y)

Don’t really need Monte Carlo here (but what if we had a 100
dice?), but let’s try it anyway. How?

Roll a pair of dice N times. Call the ith outcome (xi, yi). Then

E[min(x, y)] ≈ 1
N

N∑
i=1

min(xi, yi)

7/16

Examples of Monte Carlo sampling

x, y are a pair of dice. What is p(x, y)?

What is E[min(x, y)] =
∑6

i=1
∑6

j=1min(x, y)p(x, y)

Don’t really need Monte Carlo here (but what if we had a 100
dice?), but let’s try it anyway. How?

Roll a pair of dice N times. Call the ith outcome (xi, yi). Then

E[min(x, y)] ≈ 1
N

N∑
i=1

min(xi, yi)

7/16

Examples of Monte Carlo sampling

x, y are a pair of dice. What is p(x, y)?

What is E[min(x, y)] =
∑6

i=1
∑6

j=1min(x, y)p(x, y)

Don’t really need Monte Carlo here (but what if we had a 100
dice?), but let’s try it anyway. How?

Roll a pair of dice N times. Call the ith outcome (xi, yi). Then

E[min(x, y)] ≈ 1
N

N∑
i=1

min(xi, yi)

7/16

Examples of Monte Carlo sampling

x, y are a pair of dice. What is p(x, y)?

What is E[min(x, y)] =
∑6

i=1
∑6

j=1min(x, y)p(x, y)

Don’t really need Monte Carlo here (but what if we had a 100
dice?), but let’s try it anyway. How?

Roll a pair of dice N times. Call the ith outcome (xi, yi). Then

E[min(x, y)] ≈ 1
N

N∑
i=1

min(xi, yi)

7/16

A (bad) way of estimating the area of a circle

C

Let C be the unit disc, i.e. all points (x, y) with
x2 + y2 ≤ 1.

Its area is A(C) =
∫ ∫

x,y∈C
dxdy

=

∫ ∞

0

∫ ∞

0
δC ((x, y))dxdy

Here δC ((x, y)) = 1 if x2 + y2 ≤ 1, else it equals 0

How might we try to approximate this using Monte Carlo?

• What is the f and p?

8/16

A (bad) way of estimating the area of a circle

C

Let C be the unit disc, i.e. all points (x, y) with
x2 + y2 ≤ 1.

Its area is A(C) =
∫ ∫

x,y∈C
dxdy

=

∫ ∞

0

∫ ∞

0
δC ((x, y))dxdy

Here δC ((x, y)) = 1 if x2 + y2 ≤ 1, else it equals 0

How might we try to approximate this using Monte Carlo?

• What is the f and p?

8/16

A (bad) way of estimating the area of a circle

One way: choose some probability distribution p(x, y)
(e.g. both x and y are Gaussian distributed)

Then:

A(C) =
∫ ∞

0

∫ ∞

0
δC ((x, y))dxdy

=

∫ ∞

0

∫ ∞

0

δC ((x, y))
p(x, y) p(x, y)dxdy

≈ 1
N

N∑
i=1

δC((xi, yi))
p(xi, yi)

(Monte Carlo, with (xi, yi) ∼ p)

In words, sample N points (xi, yi) from some distribution p, and
plug them into the last equation above

9/16

A (bad) way of estimating the area of a circle

One way: choose some probability distribution p(x, y)
(e.g. both x and y are Gaussian distributed)

Then:

A(C) =
∫ ∞

0

∫ ∞

0
δC ((x, y))dxdy

=

∫ ∞

0

∫ ∞

0

δC ((x, y))
p(x, y) p(x, y)dxdy

≈ 1
N

N∑
i=1

δC((xi, yi))
p(xi, yi)

(Monte Carlo, with (xi, yi) ∼ p)

In words, sample N points (xi, yi) from some distribution p, and
plug them into the last equation above

9/16

A (bad) way of estimating the area of a circle

N <- 1000 # Number of Monte Carlo simulations

x <- rnorm(N); y <- rnorm(N) # Sample N Gaussian pairs (x,y)

px <- dnorm(x); py <- dnorm(y)

pp <- px * py # Calculate their probabiliy

dd <- sqrt(x^2+y^2)

mc_est <- 1/N * sum(1/pp[dd<1]) # Monte Carlo estimate

10/16

Rare event simulation:

Let X = (x1, . . . , x100) be a hundred dice.
What is p(

∑100
d=1 xd ≥ 450)?

11/16

Rare event simulation:

Let X = (x1, . . . , x100) be a hundred dice.
What is p(Sum(X) ≥ 450)?
(where Sum(X) =

∑100
d=1 xd)

p(Sum(X) ≥ 450) =
∑

δ(Sum(X) ≥ 450)p(X)

= Ep[δ(Sum(X) ≥ 450)]

• δ(·) is the indicator function
• δ(condition) = 1 if condition is true, else 0.

12/16

Rare event simulation:

Let X = (x1, . . . , x100) be a hundred dice.
What is p(Sum(X) ≥ 450)?
(where Sum(X) =

∑100
d=1 xd)

p(Sum(X) ≥ 450) =
∑

δ(Sum(X) ≥ 450)p(X)

= Ep[δ(Sum(X) ≥ 450)]

• δ(·) is the indicator function
• δ(condition) = 1 if condition is true, else 0.

12/16

Naive Monte Carlo sampling

• Propose from p(x)
• Calculate 1

N
∑N

i=1 δ(Sum(Xi))

Most δ(Sum(Xi)) terms will be 0

High variance

13/16

Naive Monte Carlo sampling

• Propose from p(x)
• Calculate 1

N
∑N

i=1 δ(Sum(Xi))

Most δ(Sum(Xi)) terms will be 0

High variance

13/16

Importance sampling

Importance sampling: assigns importance weights to samples.

Scheme:

• Draw a proposal xi from q(·)
• Assign it a weight wi = p(xi)/q(xi)

µ =

∫
X
f(x)p(x)dx =

∫
X
f(x)p(x)q(x)q(x)dx ≈

1
N

N∑
i=1

wif(xi) := µimp

14/16

Importance sampling

Importance sampling: assigns importance weights to samples.

Scheme:

• Draw a proposal xi from q(·)
• Assign it a weight wi = p(xi)/q(xi)

µ =

∫
X
f(x)p(x)dx =

∫
X
f(x)p(x)q(x)q(x)dx ≈

1
N

N∑
i=1

wif(xi) := µimp

14/16

Importance sampling

Importance sampling: assigns importance weights to samples.

Scheme:

• Draw a proposal xi from q(·)
• Assign it a weight wi = p(xi)/q(xi)

µ =

∫
X
f(x)p(x)dx =

∫
X
f(x)p(x)q(x)q(x)dx ≈

1
N

N∑
i=1

wif(xi) := µimp

14/16

Importance Sampling (contd)

When does this make sense?

Sometimes it’s easier to simulate from q(x) than p(x)

Sometimes it’s better to simulate from q(x) than p(x)!

To reduce variance. E.g. rare event simulation.

15/16

Importance Sampling (contd)

When does this make sense?

Sometimes it’s easier to simulate from q(x) than p(x)

Sometimes it’s better to simulate from q(x) than p(x)!

To reduce variance. E.g. rare event simulation.

15/16

Importance sampling

For 100 dice, what is p(Sum > 450)? A better choice might be to
bias the dice.
E.g. q(xi = v) ∝ v (for v ∈ {1, . . . 6})

• Propose from q(x)
• Calculate weights w(Xi) = p(Xi)/q(Xi)
• Calculate 1

N
∑N

i=1 w(Xi)δ(Sum(Xi))

Gives a better estimate of
p(Sum(X) ≥ 500) =

∑
δ(Sum(X) ≥ 500)p(X)

16/16

Importance sampling

For 100 dice, what is p(Sum > 450)? A better choice might be to
bias the dice.
E.g. q(xi = v) ∝ v (for v ∈ {1, . . . 6})

• Propose from q(x)
• Calculate weights w(Xi) = p(Xi)/q(Xi)
• Calculate 1

N
∑N

i=1 w(Xi)δ(Sum(Xi))

Gives a better estimate of
p(Sum(X) ≥ 500) =

∑
δ(Sum(X) ≥ 500)p(X)

16/16

Importance sampling

For 100 dice, what is p(Sum > 450)? A better choice might be to
bias the dice.
E.g. q(xi = v) ∝ v (for v ∈ {1, . . . 6})

• Propose from q(x)
• Calculate weights w(Xi) = p(Xi)/q(Xi)
• Calculate 1

N
∑N

i=1 w(Xi)δ(Sum(Xi))

Gives a better estimate of
p(Sum(X) ≥ 500) =

∑
δ(Sum(X) ≥ 500)p(X)

16/16

