lecture 19: monte carlo methods STAT 598z: Introduction to computing for statistics

Vinayak Rao Department of Statistics, Purdue University

April 3, 2019

 \cdot often expectations w.r.t. some probability distribution $p(x)$

$$
\mu := \mathbb{E}_{p}[f] = \int_{\mathcal{X}} f(x) p(x) \mathrm{d}x
$$

 \cdot often expectations w.r.t. some probability distribution $p(x)$

$$
\mu := \mathbb{E}_p[f] = \int_{\mathcal{X}} f(x) p(x) \mathrm{d}x
$$

What is the prob. a game of patience (solitaire) is solvable?

$$
P(Solvable) = \frac{1}{|\Pi|} \sum_{\Pi} \mathbb{1}(\Pi \text{ is solvable})
$$

 \cdot often expectations w.r.t. some probability distribution $p(x)$

$$
\mu := \mathbb{E}_p[f] = \int_{\mathcal{X}} f(x) p(x) \mathrm{d}x
$$

If we drop 3 points on the plane, each Gaussian distributed, what is average the area of the resulting triangle?

$$
\mathbb{E}[A] = \int A(x_1, x_2, x_3) p(x_1) p(x_2) p(x_3) dx_1 dx_2 dx_3
$$

 \cdot often expectations w.r.t. some probability distribution $p(x)$

$$
\mu := \mathbb{E}_p[f] = \int_{\mathcal{X}} f(x) p(x) \mathrm{d}x
$$

For dataset (*X, y*), what is is average loss if you randomly choose a weight-vector according to some distribution (e.g. rnorm)?

$$
\mathbb{E}_{w}[\mathcal{L}(X,y)] = \int (y - w^{T}X)^{2} p(w) \mathrm{d}w
$$

Monte Carlo integration

We want to calculate integrals:

$$
\mu := \mathbb{E}_{p}[f] = \int_{\mathcal{X}} f(x)p(x) \mathrm{d}x
$$

Monte Carlo integration

We want to calculate integrals:

$$
\mu := \mathbb{E}_{p}[f] = \int_{\mathcal{X}} f(x) p(x) \mathrm{d}x
$$

Sampling approximation: rather than visit all points in X , calculate a summation over a finite set.

Monte Carlo approximation:

• Obtain points by sampling from *p*(*x*)

xⁱ ∼ p

$$
\hat{\mu} \approx \frac{1}{N} \sum_{i=1}^N f(x_i)
$$

- Very simple
- Unbiased

- Very simple
- Unbiased

If *xⁱ ∼ p*,

$$
\mathbb{E}_{p}[\hat{\mu}] = \mathbb{E}_{p} \left[\frac{1}{N} \sum_{i=1}^{N} f(x) \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p}[f] = \mu
$$

E*p*[*f*] = *µ* Unbiased estimate

- Very simple
- Unbiased

If *xⁱ ∼ p*, $\mathbb{E}_\rho[\hat{\mu}]=\mathbb{E}_\rho$ \lceil 1 *N* ∑ *N i*=1 *f*(*x*)] $=\frac{1}{b}$ *N* ∑ *N i*=1 $\mathbb{E}_p[f] = \mu$ Unbiased estimate $\textsf{Var}_p[\hat{\mu}]=\frac{1}{N}$ $Var_p[f],$ Error = StdDev $\propto N^{-1/2}$

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible E.g. Simpson's rule in *d*-dimensions, with *N* grid points:

error *∝ N −*4*/d*

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible E.g. Simpson's rule in *d*-dimensions, with *N* grid points:

error *∝ N −*4*/d*

Monte Carlo integration:

error *∝ N −*1*/*2

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible E.g. Simpson's rule in *d*-dimensions, with *N* grid points:

error *∝ N −*4*/d*

Monte Carlo integration:

error *∝ N −*1*/*2

Independent of dimensionality!

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

No!

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: *pseudorandom* numbers.

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

No!

- Instead: *pseudorandom* numbers.
- Map a seed to a 'random-looking' sequence.

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

No!

- Instead: *pseudorandom* numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

No!

- Instead: *pseudorandom* numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html
- Upside: Can use seeds for reproducibility or debugging

set*.*seed(1)

- The simplest useful probability distribution Unif(0*,* 1).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?

No!

- Instead: *pseudorandom* numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html
- Upside: Can use seeds for reproducibility or debugging

set*.*seed(1)

• Careful with batch/parallel processing.

In R we generate uniform random variables via runif Additional functions include rnorm(), rgamma(), rexp(), sample() etc.

In R we generate uniform random variables via runif

```
Additional functions include
```

```
rnorm(), rgamma(), rexp(), sample() etc.
```
In theory, we can generate any other random variable by transforming a uniform (or any other) random variable:

$$
u \sim \text{Unif}(0,1), \quad x = f(u)
$$

In R we generate uniform random variables via runif

```
Additional functions include
```

```
rnorm(), rgamma(), rexp(), sample() etc.
```
In theory, we can generate any other random variable by transforming a uniform (or any other) random variable:

$$
u \sim \text{Unif}(0,1), \quad x = f(u)
$$

In practice, finding this *f* is too hard. Need other approaches. There is a whole subfield of statistics addressing this.

Examples of Monte Carlo sampling

x, y are a pair of dice. What is $p(x, y)$?

EXAMPLES OF MONTE CARLO SAMPLING

x, y are a pair of dice. What is $p(x, y)$?

 W hat is $\mathbb{E}[\min(X, y)] = \sum_{i=1}^{6} \sum_{j=1}^{6} \min(X, y)p(x, y)$

Examples of Monte Carlo sampling

x, y are a pair of dice. What is $p(x, y)$?

 W hat is $\mathbb{E}[\min(X, y)] = \sum_{i=1}^{6} \sum_{j=1}^{6} \min(X, y)p(x, y)$

Don't really need Monte Carlo here (but what if we had a 100 dice?), but let's try it anyway. How?

Examples of Monte Carlo sampling

x, y are a pair of dice. What is *p*(*x, y*)?

 W hat is $\mathbb{E}[\min(X, y)] = \sum_{i=1}^{6} \sum_{j=1}^{6} \min(X, y)p(x, y)$

Don't really need Monte Carlo here (but what if we had a 100 dice?), but let's try it anyway. How?

Roll a pair of dice *N* times. Call the *i*th outcome (x_i, y_i) . Then

$$
\mathbb{E}[\min(x, y)] \approx \frac{1}{N} \sum_{i=1}^{N} \min(x_i, y_i)
$$

A (bad) way of estimating the area of a circle

Let *C* be the unit disc, i.e. all points (*x, y*) with $x^2 + y^2 \leq 1.$

Its area is
$$
A(C) = \int \int_{x,y \in C} dx dy
$$

= $\int_{0}^{\infty} \int_{0}^{\infty} \delta_C ((x, y)) dxdy$

Here $\delta_C((x, y)) = 1$ if $x^2 + y^2 \le 1$, else it equals 0

A (bad) way of estimating the area of a circle

Let *C* be the unit disc, i.e. all points (*x, y*) with $x^2 + y^2 \leq 1.$

Its area is
$$
A(C) = \int \int_{x,y \in C} dx dy
$$

= $\int_{0}^{\infty} \int_{0}^{\infty} \delta_C ((x, y)) dxdy$

Here $\delta_C((x, y)) = 1$ if $x^2 + y^2 \le 1$, else it equals 0

How might we try to approximate this using Monte Carlo?

• What is the *f* and *p*?

A (bad) way of estimating the area of a circle

One way: choose some probability distribution *p*(*x, y*) (e.g. both *x* and *y* are Gaussian distributed)

Then:

$$
A(C) = \int_0^\infty \int_0^\infty \delta_C((x, y)) \,dxdy
$$

=
$$
\int_0^\infty \int_0^\infty \frac{\delta_C((x, y))}{\rho(x, y)} \rho(x, y) \,dxdy
$$

$$
\approx \frac{1}{N} \sum_{i=1}^N \frac{\delta_C((x_i, y_i))}{\rho(x_i, y_i)} \quad \text{(Monte Carlo, with } (x_i, y_i) \sim p)
$$

One way: choose some probability distribution *p*(*x, y*) (e.g. both *x* and *y* are Gaussian distributed)

Then:

$$
A(C) = \int_0^\infty \int_0^\infty \delta_C((x, y)) \,dxdy
$$

=
$$
\int_0^\infty \int_0^\infty \frac{\delta_C((x, y))}{\rho(x, y)} \rho(x, y) \,dxdy
$$

$$
\approx \frac{1}{N} \sum_{i=1}^N \frac{\delta_C((x_i, y_i))}{\rho(x_i, y_i)} \quad \text{(Monte Carlo, with } (x_i, y_i) \sim p\text{)}
$$

In words, sample *N* points (x_i, y_i) from some distribution p , and plug them into the last equation above

N <- 1000 # Number of Monte Carlo simulations x <- rnorm(N); y <- rnorm(N) # Sample N Gaussian pairs (x,y) $px \leq -\text{dnorm}(x); py \leq -\text{dnorm}(y)$ $pp \le -px \cdot py$ # Calculate their probabiliy dd \le sqrt(x^2+y^2) mc_est <- $1/N * sum(1/pp[dd<1])$ # Monte Carlo estimate

Let $X = (x_1, ..., x_{100})$ be a hundred dice. What is $p(\sum_{d=1}^{100} x_d \ge 450)$?

Rare event simulation:

Let
$$
X = (x_1, \ldots, x_{100})
$$
 be a hundred dice.
What is $p(\text{Sum}(X) \ge 450)$?
(where Sum $(X) = \sum_{d=1}^{100} x_d$)

Rare event simulation:

Let $X = (x_1, ..., x_{100})$ be a hundred dice. What is $p(\text{Sum}(X) \geq 450)$? $(\text{where Sum}(X) = \sum_{d=1}^{100} X_d)$

$$
p(Sum(X) \ge 450) = \sum \delta(Sum(X) \ge 450)p(X)
$$

$$
= \mathbb{E}_{p}[\delta(Sum(X) \ge 450)]
$$

- *δ*(*·*) is the indicator function
- \cdot *δ*(*condition*) = 1 if *condition* is true, else 0.
- Propose from *p*(*x*)
- Calculate $\frac{1}{N}\sum_{i=1}^{N}\delta(\textsf{Sum}(X_i))$
- Propose from *p*(*x*)
- Calculate $\frac{1}{N}\sum_{i=1}^{N}\delta(\textsf{Sum}(X_i))$

 M ost δ (Sum (X_i)) terms will be 0 High variance

Importance sampling: assigns importance weights to samples.

Importance sampling: assigns importance weights to samples. Scheme:

- Draw a proposal *xⁱ* from *q*(*·*)
- Assign it a weight $w_i = p(x_i)/q(x_i)$

Importance sampling: assigns importance weights to samples. Scheme:

- Draw a proposal *xⁱ* from *q*(*·*)
- Assign it a weight $w_i = p(x_i)/q(x_i)$

$$
\mu = \int_{\mathcal{X}} f(x) p(x) \mathrm{d}x = \int_{\mathcal{X}} f(x) \frac{p(x)}{q(x)} q(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^{N} w_i f(x_i) := \mu_{imp}
$$

When does this make sense?

Sometimes it's easier to simulate from *q*(*x*) than *p*(*x*)

When does this make sense?

Sometimes it's easier to simulate from *q*(*x*) than *p*(*x*) Sometimes it's better to simulate from *q*(*x*) than *p*(*x*)! To reduce variance. E.g. rare event simulation.

For 100 dice, what is *p*(Sum > 450)? A better choice might be to bias the dice.

E.g. *q*(*x*_{*i*} = *v*) ∞ *v* (for *v* ∈ {1, . . . 6})

For 100 dice, what is *p*(Sum > 450)? A better choice might be to bias the dice.

E.g.
$$
q(x_i = v) \propto v
$$
 (for $v \in \{1, \ldots 6\}$)

- Propose from *q*(*x*)
- \cdot Calculate weights $w(X_i) = p(X_i)/q(X_i)$
- \cdot Calculate $\frac{1}{N}\sum_{i=1}^{N}w(X_i)\delta(\textsf{Sum}(X_i))$

For 100 dice, what is *p*(Sum > 450)? A better choice might be to bias the dice.

E.g.
$$
q(x_i = v) \propto v
$$
 (for $v \in \{1, \ldots 6\}$)

- Propose from *q*(*x*)
- \cdot Calculate weights $w(X_i) = p(X_i)/q(X_i)$
- \cdot Calculate $\frac{1}{N}\sum_{i=1}^{N}w(X_i)\delta(\textsf{Sum}(X_i))$

Gives a better estimate of $p(Sum(X) \ge 500) = \sum \delta(Sum(X) \ge 500)p(X)$