LECTURE 17: OVERVIEW OF OPTIMIZATION
STAT 598Z: INTRODUCTION TO COMPUTING FOR STATISTICS

Vinayak Rao
Department of Statistics, Purdue University

March 25, 2019

GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function values, derivatives).

Local minimum

Global minimum

120

GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function values, derivatives).

Local minimum

Global minimum

Finding a global minimum is hard!

We'll settle for a local minimum (maybe with multiple restarts).
120

ESTIMATING MLE

Consider a set of observations X = (x1,- -+, Xn).

Assume x; ~ p(x;|0)

Maximum likelihood:

N
Omie = argmax p(X|0) = argmax Hp(x,»|0)
i=1

More convenient to maximize the log-likelihood:
N
Ouie = argmax log p(X|0) = argmax > _ log p(x;|6)
i=1

220

&
The gradient Vf = {%, e ,aix’;]

3120

FIRST-ORDER CONDITIONS

=
The gradient Vf = [8‘9—){:, e ,a%ﬂ

An infinitesimal step along dx = [dx;, - - - , dxy] gives a change

df = Vf - dx

3120

FIRST-ORDER CONDITIONS

-
The gradient Vf = [%,... 73%];}
An infinitesimal step along dx = [dx, - - - , dxy] gives a change

Vf: Direction of steepest ascent (—Vfis steepest descent).

3120

FIRST-ORDER CONDITIONS

-
The gradient Vf = [%,... 73%];}
An infinitesimal step along dx = [dx, - - - , dxy] gives a change

Vf: Direction of steepest ascent (—Vfis steepest descent).

At a local optimum Vf = 0.

3120

FIRST-ORDER CONDITIONS

=

The gradient Vf = [8}(1 = ,8%7;}

An infinitesimal step along dx = [dx;, - - - , dxy] gives a change
df = Vf-dx

Vf: Direction of steepest ascent (—Vfis steepest descent).

At a local optimum Vf = 0.

At a local minimum, Hessian V?f > 0 (positive semidefinite)

of
i Ox0x;

[Vl =

3120

ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Find a bracket (a, b) with a third point ¢ € (a, b), with

fla) > f(c) < f(b)

Implies a local minimum lies in (a, b).

420

ONE-DIMENSIONAL MINIMIZATION

1)

f(o)

Finding an initial bracketing is not always easy. E.g.

- Picktwo pointslandr, [<r

5/20

ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Finding an initial bracketing is not always easy. E.g.

- Picktwo pointslandr, [<r
- Iff() <f(r),c=landb=relsea=landc=r.

5/20

ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Finding an initial bracketing is not always easy. E.g.

- Picktwo pointslandr, [<r
- Iff() <f(r),c=landb=relsea=landc=r.

- In the first case, choose a < ¢, and keep decreasing till
f(a) > f(c) (similarly with b for second case)

5/20

ONE-DIMENSIONAL MINIMIZATION

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, ¢) or (c, b).

6/20

ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, ¢) or (c, b).

- Suppose it is (¢, b). Then aither (a,c,d) and (c,d, b) forms a
bracket.

6/20

ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, ¢) or (c, b).

- Suppose it is (¢, b). Then aither (a,c,d) and (c,d, b) forms a
bracket.

- Choose and repeat

6/20

ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, ¢) or (c, b).

- Suppose it is (¢, b). Then aither (a,c,d) and (c,d, b) forms a
bracket.

- Choose and repeat

Doesn't extend easily to higher dimensions.

6/20

THE SIMPLEX ALGORITHM (NELDER & MEAD)

Find minimum of some function f: R? — R.

Requires only function evaluations.
Very general purpose, but not very efficient.

7/20

THE SIMPLEX ALGORITHM (NELDER & MEAD)

Find minimum of some function f: R? — R.

Requires only function evaluations.
Very general purpose, but not very efficient.

A ‘'simplex’ in N-dimensions is the convex-hull of N + 1 points.
In 1-d: a line segment, 2-d: a triangle, 3-d: a tetrahedron etc.

— AV

7/20

THE SIMPLEX ALGORITHM (NELDER & MEAD)

Find minimum of some function f: R? — R.

Requires only function evaluations.
Very general purpose, but not very efficient.

A ‘'simplex’ in N-dimensions is the convex-hull of N + 1 points.
In 1-d: a line segment, 2-d: a triangle, 3-d: a tetrahedron etc.

— AV

In 1-d we could bracket the minimum.
In higher dims, we must use other heuristics. 7/20

THE SIMPLEX ALGORITHM (NELDER & MEAD)

Start with an initial simplex.

Typically, pick an initial point Pg.

Also set (Pq,- -+, Pyyq) with P; = Py + \je;.

Here e; is the ith coordinate direction, and J; is the
length-scale in that direction.

820

THE SIMPLEX ALGORITHM (NELDER & MEAD)

Start with an initial simplex.
Typically, pick an initial point Pg.
Also set (Pq,- -+, Pyyq) with P; = Py + \je;.

Here e; is the ith coordinate direction, and J; is the
length-scale in that direction.

Assume f(Po) < f(P1) < -+ < f(Pn1).

820

THE SIMPLEX ALGORITHM (NELDER & MEAD)
Start with an initial simplex.

Typically, pick an initial point Pg.

Also set (Pq,- -+, Pyyq) with P; = Py + \je;.

Here e; is the ith coordinate direction, and J; is the
length-scale in that direction.

Assume f(Po) < f(P1) < -+ < f(Pn1).

At each step, try to improve the worst point Py4q using one of a
sequence of moves.

820

Get initial simplex

920

SIMPLEX ALGORITHM

~

Find worst point, and find centroid of the remaining.

920

SIMPLEX ALGORITHM

Reflect worst point.
This new point is now either worst, best or in the middle.

920

If this is the best point, extend.

920

and go back to step one.

920

If this is the worst point, contract.

920

f

If this is the worst point, contract.

920

Else shrink all points except the best.

920

GRADIENT DESCENT

Let X, g be our current value

Update Xpew as Xnew = Xold — 1 (%]; ;
old

The steeper the slope, the bigger the move

10/20

GRADIENT DESCENT

Let X, g be our current value

Updat = Xotd — 1) L
pdate Xpew aS Xnew = Xold — 1 g ;

old

The steeper the slope, the bigger the move

n: sometimes called the ‘learning rate’
(terminology from the neural network literature)

10/20

GRADIENT DESCENT

Let X, g be our current value

d
Update Xpew as Xnew = Xold — 1 d*]; ;
o

ld
The steeper the slope, the bigger the move

n: sometimes called the ‘learning rate’
(terminology from the neural network literature)

Choosing n is a dark art:

A=AV

10/20

GRADIENT DESCENT

Let X, g be our current value

d
Update Xpew as Xnew = Xold — 1] d*]; .
old

The steeper the slope, the bigger the move

n: sometimes called the ‘learning rate’
(terminology from the neural network literature)

Choosing n is a dark art:

A=AV

Better methods adapt step-size according to the curvature of f.
1020

GRADIENT DESCENT IN HIGHER-DIMENSIONS

Gradient descent applies to higher dimensions too:

Xnew = Xold — 1 vﬂxo,d

1120

STEEPEST DESCENT

W

An any iteration, set p to the direction of steepest descent.

p = Vf(x;)

Minimize along that direction:

Set X1 = Xj + AminPp-

Amin = argminkf(x,» +)‘p)

12/20

STEEPEST DESCENT

Can get trapped in long narrow valleys, where successive steps

cancel each other.

W

12/20

STEEPEST DESCENT

L 1 i i L L L
2 15 -1 -05 0 05 1 15 2

Can get trapped in long narrow valleys, where successive steps
cancel each other.

13/20

CONJUGATE DESCENT

s

Conjugate gradient avoids moves along the same direction.

For a D-dim quadratic loss reaches minimum in D steps

Common default method
14/20

NEWTON’S METHOD

Uses the second derivative (curvature) to decide the step-size
n.

Tit1 Zi

At current point x;, evaluate f(x;),f(x;) and f’(x;).
Fit a parabola having these values and set x4 to its minimum.

15/20

NEWTON’S METHOD

Uses the second derivative (curvature) to decide the step-size
n.

Tit+1 i

At current point x;, evaluate f(x;),f(x;) and f’(x;).
Fit a parabola having these values and set x4 to its minimum.

Easy to see that (show it!):
Xipr =X — £ (i) /" (x;)

15/20

NEWTON’S METHOD

Uses the second derivative (curvature) to decide the step-size
n.

Tit+1 i

At current point x;, evaluate f(x;),f(x;) and f’(x;).

Fit a parabola having these values and set x4 to its minimum.

Easy to see that (show it!):

Xipr =X — £ (i) /" (x;)

If f" is large, we're uncertain about f, so take a small step.

15/20

Update rule:

Xit1 = X — [Vf(x)]~'VA(x)

16/20

NEWTON’S METHOD IN HIGHER DIMENSIONS

Update rule:
Xit1 = X — [V*f)] 7 VA(x;)

Need to calculate the Hessian V2f: N? elements.

Need to invert the Hessian: N3 operations.

16/20

NEWTON’S METHOD IN HIGHER DIMENSIONS

Update rule:
Xit1 = X — [V*f)] 7 VA(x;)

Need to calculate the Hessian V2f: N? elements.

Need to invert the Hessian: N3 operations.

Each iteration can be expensive.
Quasi-Newton methods try to alleviate this issue.

16/20

NEWTON’S METHOD IN HIGHER DIMENSIONS

Update rule:
Xit1 = X — [V*f)] 7 VA(x;)

Need to calculate the Hessian V2f: N? elements.

Need to invert the Hessian: N3 operations.

Each iteration can be expensive.
Quasi-Newton methods try to alleviate this issue.

We have to be wary about taking wild steps.

16/20

NEWTON’S DESCENT

8

Set p to the minimum of the local quadratic approximation.

p = [V2f(x)]"Vf(x;)

Reaches minimum of quadratic loss in 1 step
17/20

QUASI-NEWTON METHODS
Newton’s method: p = [V2f(x)]~"Vf(x;)

Steepest's descept: p = | Vf(X))

1820

QUASI-NEWTON METHODS
Newton's method: p = [V2f(x)]~'Vf(x))

Steepest's descept: p = | Vf(X))

Quasi-Newton methods use other matrices B:

p = BVf(x;)

1820

QUASI-NEWTON METHODS
Newton's method: p = [V2f(x)]~'Vf(x))

Steepest's descept: p = | Vf(X))

Quasi-Newton methods use other matrices B:
p = BVf(X)
Usually, B is allowed to vary from iteration to iteration, with
B — [V*f(x)] "
Get benefits of Newton’s method, without O(N®) computations.

E.g. BFGS
18/20

CO-ORDINATE DESCENT

Saw this last lecture

Simple, clean and inexpensive.
Often the 1-d problems can be solved exactly.

Convergence can be slow.
Exception: axis aligned ellipses need just D steps.
19/20

OPTIMIZATION IN R

Use the optim function

Syntax:

optim(par, fn, gr = NULL, ...,
method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
'Brent'),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

fn: function to be optimized
gr: gradient function (calculate numerically if NULL)

par: initial value of parameter to be optimized (should be first
argument of fn)

20,20

