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Global and local minimum

Find minimum of some function f : RD → R.
(maximization is just minimizing −f).

No global information (e.g. only function values, derivatives).

Global minimum

Local minimum

Finding a global minimum is hard!

We’ll settle for a local minimum (maybe with multiple restarts).
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Estimating MLE

Consider a set of observations X = (x1, · · · , xN).

Assume xi ∼ p(xi|θ)

Maximum likelihood:

θMLE = argmax p(X|θ) = argmax
N∏
i=1

p(xi|θ)

More convenient to maximize the log-likelihood:

θMLE = argmax log p(X|θ) = argmax
N∑
i=1

log p(xi|θ)
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First-order conditions

The gradient ∇f =
[

∂f
∂x1 , · · · ,

∂f
∂xD

]⊤

An infinitesimal step along dx = [dx1, · · · ,dxN] gives a change

df = ∇f · dx

∇f: Direction of steepest ascent (−∇f is steepest descent).

At a local optimum ∇f = 0.

At a local minimum, Hessian ∇2f ⪰ 0 (positive semidefinite)

[
∇2f

]
ij =

∂2f
∂xi∂xj
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One-dimensional minimization

Find a bracket (a,b) with a third point c ∈ (a,b), with

f(a) > f(c) < f(b)

Implies a local minimum lies in (a,b).
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One-dimensional minimization

Finding an initial bracketing is not always easy. E.g.

• Pick two points l and r, l < r

• If f(l) < f(r), c = l and b = r, else a = l and c = r.
• In the first case, choose a < c, and keep decreasing till
f(a) > f(c) (similarly with b for second case)
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One-dimensional minimization

Having done this, successively refine (a, c) or (c,b).

• Pick d in the longer interval (a, c) or (c,b).

• Suppose it is (c,b). Then aither (a, c,d) and (c,d,b) forms a
bracket.

• Choose and repeat

Doesn’t extend easily to higher dimensions.
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The simplex algorithm (Nelder & Mead)

Find minimum of some function f : RD → R.

Requires only function evaluations.
Very general purpose, but not very efficient.

A ‘simplex’ in N-dimensions is the convex-hull of N+ 1 points.
In 1-d: a line segment, 2-d: a triangle, 3-d: a tetrahedron etc.

In 1-d we could bracket the minimum.
In higher dims, we must use other heuristics.
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The simplex algorithm (Nelder & Mead)

Start with an initial simplex.

Typically, pick an initial point P0.
Also set (P1, · · · ,PN+1) with Pi = P0 + λiei.
Here ei is the ith coordinate direction, and λi is the
length-scale in that direction.

Assume f(P0) ≤ f(P1) ≤ · · · ≤ f(PN+1).

At each step, try to improve the worst point PN+1 using one of a
sequence of moves.
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Simplex algorithm

Get initial simplex
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Simplex algorithm

Find worst point, and find centroid of the remaining.
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Simplex algorithm

Reflect worst point.
This new point is now either worst, best or in the middle.
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Simplex algorithm

If this is the best point, extend.
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Simplex algorithm

and go back to step one.
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Simplex algorithm

If this is the worst point, contract.
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Simplex algorithm

Else shrink all points except the best.
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Gradient descent

Let xold be our current value

Update xnew as xnew = xold − η df
dx

∣∣∣
xold

The steeper the slope, the bigger the move

η: sometimes called the ‘learning rate’
(terminology from the neural network literature)

Choosing η is a dark art:

Better methods adapt step-size according to the curvature of f.
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Gradient descent in higher-dimensions

Gradient descent applies to higher dimensions too:

xnew = xold − η ∇f|xold
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Steepest descent

An any iteration, set p to the direction of steepest descent.

p = ∇f(xi)

Minimize along that direction: λmin = argminλf(xi + λp)

Set xi+1 = xi + λminp.
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Steepest descent

Can get trapped in long narrow valleys, where successive steps
cancel each other.
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Conjugate descent

Conjugate gradient avoids moves along the same direction.

For a D-dim quadratic loss reaches minimum in D steps

Common default method
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Newton’s method

Uses the second derivative (curvature) to decide the step-size
η.

At current point xi, evaluate f(xi), f′(xi) and f′′(xi).
Fit a parabola having these values and set xi+1 to its minimum.

Easy to see that (show it!):

xi+1 = xi − f′(xi)/f′′(xi)

If f′′ is large, we’re uncertain about f′, so take a small step.

15/20



Newton’s method

Uses the second derivative (curvature) to decide the step-size
η.

At current point xi, evaluate f(xi), f′(xi) and f′′(xi).
Fit a parabola having these values and set xi+1 to its minimum.

Easy to see that (show it!):

xi+1 = xi − f′(xi)/f′′(xi)

If f′′ is large, we’re uncertain about f′, so take a small step.

15/20



Newton’s method

Uses the second derivative (curvature) to decide the step-size
η.

At current point xi, evaluate f(xi), f′(xi) and f′′(xi).
Fit a parabola having these values and set xi+1 to its minimum.

Easy to see that (show it!):

xi+1 = xi − f′(xi)/f′′(xi)

If f′′ is large, we’re uncertain about f′, so take a small step.
15/20



Newton’s method in higher dimensions

Update rule:

xi+1 = xi − [∇2f(xi)]−1∇f(xi)

Need to calculate the Hessian ∇2f: N2 elements.

Need to invert the Hessian: N3 operations.

Each iteration can be expensive.
Quasi-Newton methods try to alleviate this issue.

We have to be wary about taking wild steps.
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Newton’s descent

Set p to the minimum of the local quadratic approximation.

p = [∇2f(x)]−1∇f(xi)

Reaches minimum of quadratic loss in 1 step
17/20



Quasi-Newton methods

Newton’s method: p = [∇2f(x)]−1∇f(xi)

Steepest’s descept: p = I ∇f(xi)

Quasi-Newton methods use other matrices B:

p = B∇f(xi)

Usually, B is allowed to vary from iteration to iteration, with

Bi → [∇2f(x)]−1

Get benefits of Newton’s method, without O(N3) computations.

E.g. BFGS
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Co-ordinate descent
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Saw this last lecture

Simple, clean and inexpensive.
Oǒten the 1-d problems can be solved exactly.

Convergence can be slow.
Exception: axis aligned ellipses need just D steps.
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Optimization in R

Use the optim function

Syntax:
optim(par, fn, gr = NULL, ...,

method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
'Brent'),

lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

fn: function to be optimized

gr: gradient function (calculate numerically if NULL)

par: initial value of parameter to be optimized (should be first
argument of fn)
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