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GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function values, derivatives).

Local minimum

Global minimum
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GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function values, derivatives).

Local minimum

Global minimum

Finding a global minimum is hard!

We'll settle for a local minimum (maybe with multiple restarts).
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ESTIMATING MLE

Consider a set of observations X = (x1,- -+, Xn).

Assume x; ~ p(x;|0)

Maximum likelihood:

N
Omie = argmax p(X|0) = argmax Hp(x,»|0)
i=1

More convenient to maximize the log-likelihood:
N
Ouie = argmax log p(X|0) = argmax > _ log p(x;|6)
i=1
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&
The gradient Vf = {%, e ,aix’;]
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FIRST-ORDER CONDITIONS

=
The gradient Vf = [8‘9—){:, e ,a%ﬂ

An infinitesimal step along dx = [dx;, - - - , dxy] gives a change

df = Vf - dx
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FIRST-ORDER CONDITIONS

=

The gradient Vf = [8}(1 = ,8%7;}

An infinitesimal step along dx = [dx;, - - - , dxy] gives a change
df = Vf-dx

Vf: Direction of steepest ascent (—Vfis steepest descent).

At a local optimum Vf = 0.

At a local minimum, Hessian V?f > 0 (positive semidefinite)

of
i Ox0x;

[Vl =
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ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Find a bracket (a, b) with a third point ¢ € (a, b), with

fla) > f(c) < f(b)

Implies a local minimum lies in (a, b).
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ONE-DIMENSIONAL MINIMIZATION

1)

f(o)

Finding an initial bracketing is not always easy. E.g.

- Picktwo pointslandr, [ <r
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ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Finding an initial bracketing is not always easy. E.g.

- Picktwo pointslandr, [ <r
- Iff() <f(r),c=landb=relsea=landc=r.

- In the first case, choose a < ¢, and keep decreasing till
f(a) > f(c) (similarly with b for second case)

5/20



ONE-DIMENSIONAL MINIMIZATION

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, ¢) or (c, b).
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ONE-DIMENSIONAL MINIMIZATION

1)
f(o)

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, ¢) or (c, b).

- Suppose it is (¢, b). Then aither (a,c,d) and (c,d, b) forms a
bracket.

- Choose and repeat

Doesn't extend easily to higher dimensions.
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THE SIMPLEX ALGORITHM (NELDER & MEAD)

Find minimum of some function f: R? — R.

Requires only function evaluations.
Very general purpose, but not very efficient.
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THE SIMPLEX ALGORITHM (NELDER & MEAD)

Find minimum of some function f: R? — R.

Requires only function evaluations.
Very general purpose, but not very efficient.

A ‘'simplex’ in N-dimensions is the convex-hull of N + 1 points.
In 1-d: a line segment, 2-d: a triangle, 3-d: a tetrahedron etc.

— AV

In 1-d we could bracket the minimum.
In higher dims, we must use other heuristics. 7/20



THE SIMPLEX ALGORITHM (NELDER & MEAD)

Start with an initial simplex.

Typically, pick an initial point Pg.

Also set (Pq,- -+, Pyyq) with P; = Py + \je;.

Here e; is the ith coordinate direction, and J; is the
length-scale in that direction.
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THE SIMPLEX ALGORITHM (NELDER & MEAD)
Start with an initial simplex.

Typically, pick an initial point Pg.

Also set (Pq,- -+, Pyyq) with P; = Py + \je;.

Here e; is the ith coordinate direction, and J; is the
length-scale in that direction.

Assume f(Po) < f(P1) < -+ < f(Pn1).

At each step, try to improve the worst point Py4q using one of a
sequence of moves.
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Get initial simplex
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SIMPLEX ALGORITHM

~

Find worst point, and find centroid of the remaining.
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SIMPLEX ALGORITHM

Reflect worst point.
This new point is now either worst, best or in the middle.
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If this is the best point, extend.
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and go back to step one.
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If this is the worst point, contract.
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f

If this is the worst point, contract.
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Else shrink all points except the best.

920



GRADIENT DESCENT

Let X, g be our current value

Update Xpew as Xnew = Xold — 1 (%]; ;
old

The steeper the slope, the bigger the move
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GRADIENT DESCENT

Let X, g be our current value

d
Update Xpew as Xnew = Xold — 1] d*]; .
old

The steeper the slope, the bigger the move

n: sometimes called the ‘learning rate’
(terminology from the neural network literature)

Choosing n is a dark art:

A=AV

Better methods adapt step-size according to the curvature of f.
1020




GRADIENT DESCENT IN HIGHER-DIMENSIONS

Gradient descent applies to higher dimensions too:

Xnew = Xold — 1 vﬂxo,d

1120



STEEPEST DESCENT

W

An any iteration, set p to the direction of steepest descent.

p = Vf(x;)

Minimize along that direction:

Set X1 = Xj + AminPp-

Amin = argminkf(x,» + )‘p)

12/20



STEEPEST DESCENT

Can get trapped in long narrow valleys, where successive steps

cancel each other.

W
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STEEPEST DESCENT

L 1 i i L L L
2 15 -1 -05 0 05 1 15 2

Can get trapped in long narrow valleys, where successive steps
cancel each other.
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CONJUGATE DESCENT

s

Conjugate gradient avoids moves along the same direction.

For a D-dim quadratic loss reaches minimum in D steps

Common default method
14/20



NEWTON’S METHOD

Uses the second derivative (curvature) to decide the step-size
n.

Tit1 Zi

At current point x;, evaluate f(x;),f(x;) and f’(x;).
Fit a parabola having these values and set x4 to its minimum.
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At current point x;, evaluate f(x;),f(x;) and f’(x;).
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Easy to see that (show it!):
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NEWTON’S METHOD

Uses the second derivative (curvature) to decide the step-size
n.

Tit+1 i

At current point x;, evaluate f(x;),f(x;) and f’(x;).

Fit a parabola having these values and set x4 to its minimum.

Easy to see that (show it!):

Xipr =X — £ (i) /" (x;)

If f" is large, we're uncertain about f, so take a small step.

15/20



Update rule:

Xit1 = X — [Vf(x)]~'VA(x)
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NEWTON’S METHOD IN HIGHER DIMENSIONS

Update rule:
Xit1 = X — [V*f)] 7 VA(x;)

Need to calculate the Hessian V2f: N? elements.

Need to invert the Hessian: N3 operations.
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NEWTON’S METHOD IN HIGHER DIMENSIONS

Update rule:
Xit1 = X — [V*f)] 7 VA(x;)

Need to calculate the Hessian V2f: N? elements.

Need to invert the Hessian: N3 operations.

Each iteration can be expensive.
Quasi-Newton methods try to alleviate this issue.

We have to be wary about taking wild steps.

16/20



NEWTON’S DESCENT

8

Set p to the minimum of the local quadratic approximation.

p = [V2f(x)]"Vf(x;)

Reaches minimum of quadratic loss in 1 step
17/20



QUASI-NEWTON METHODS
Newton’s method: p = [V2f(x)]~"Vf(x;)

Steepest's descept: p = | Vf(X))
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QUASI-NEWTON METHODS
Newton's method: p = [V2f(x)]~'Vf(x))

Steepest's descept: p = | Vf(X))

Quasi-Newton methods use other matrices B:
p = BVf(X)
Usually, B is allowed to vary from iteration to iteration, with
B — [V*f(x)] "
Get benefits of Newton’s method, without O(N®) computations.

E.g. BFGS
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CO-ORDINATE DESCENT

Saw this last lecture

Simple, clean and inexpensive.
Often the 1-d problems can be solved exactly.

Convergence can be slow.
Exception: axis aligned ellipses need just D steps.
19/20



OPTIMIZATION IN R

Use the optim function

Syntax:

optim(par, fn, gr = NULL, ...,
method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
'Brent'),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

fn: function to be optimized
gr: gradient function (calculate numerically if NULL)

par: initial value of parameter to be optimized (should be first
argument of fn)
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