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BIAS-VARIANCE AND REGULARIZATION

Problem: Given training data (X,y) = {x;,V;},
minimize £(w) = J(Y — XTw)?
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BIAS-VARIANCE AND REGULARIZATION

Problem: Given training data (X,y) = {x;,V;},
minimize £(w) = J(Y — XTw)?

To reduce variance (i.e. sensitivity to small changes in training
data) , add a penalty Q(w):

W =argmin L(w) + AQ(w)
Ridge regression/L, regression:

- Q(w) = [|w}3
- W= (XTX+X)"'XTy (Shrinkage)
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BIAS-VARIANCE AND REGULARIZATION

Problem: Given training data (X,y) = {x;,V;}
minimize £(w) = J(Y — X"w)?

To reduce variance (i.e. sensitivity to small changes in training
data) , add a penalty Q(w):

W = argmin L(w) + AQ(w)
LASSO:

- Q(w) = [lwllr (lwllr = wi] + [wa| + - -+ [wp))
- Shrinkage and selection
(w is sparse with some components equal to 0)

- No simple closed-form solution
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CREDIT DATA SET (AVERAGE CREDIT CARD DEBT)

— Income

==~ Limit
Rating
Student

I
\

L L
| '
B .
b ,
3 ’
L
e
N
Y
/)
s
L L
/

100 0 100 200 300 400
L

-100 0 100 200 300 400
L
A

Standardized Coefficients
Standardized Coefficients

s 3
g g
@ T T T @ T T T T T T
1e-02 1e+00 1e+02 1e+04 0.0 0.2 0.4 0.6 0.8 1.0
GR 3
A 15312/1181l2
2 RN g Z
2 g oo 2 o i
5 8 & %9000, oon0 ) 587 e
S g s S o
£ 84 .. 4 £ 8+
o « . ~ : o & -7
o . -3 -
S g 2 © s o2
o = 5 - ¢ -
@ ~ B 51
N ~ 5 N
5 o e 5 ©
3 s
% il (‘:: 8 | Income
= g ==~ Limi
n g » I
§ 4 - Rating
a Student
g
T LI — L T - T T T T T
20 50 100 200 500 2000 5000 00 02 04 06 08 10
AL 3
A 1851/

(top) ridge, (bottom) LASSO. (James, Witten, Hastic and Tibshirani) 216



REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — X"w)? + Allw||3 is equivalent to
argmin(y — X"w)? s.t. [|w]|Z <~

(Note: v will depend on data)
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — X"w)? + Allw||3 is equivalent to
argmin(y — X"w)? s.t. [|w]|Z <~
(Note: v will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — X"w)? + Allw||3 is equivalent to
argmin(y — X"w)? s.t. [|w]|Z <~
(Note: v will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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argmin(y — X"w)? s.t. |w|l; <~

wllq =>" |wi| is the ¢4-norm.
lwll = 327, [w| is the ¢
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LASSO

argmin(y — XTw)? s.t. |lwlj; < v

lwljy = ZJL ;| is the £1-norm.

Lasso: least absolute shrinkage and selection operator.

—argm'nZ =X w)? + Allwl)y
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LASSO

argmin(y —X"w)? s.t. ||lwll; <~

lwljy = ZJL ;| is the £1-norm.

Lasso: least absolute shrinkage and selection operator.

_argmlnz =X W) 4 A|wlf

- Penalizes small w; more than ridge regression.
- Tolerates larger w; more than ridge regression.
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LASSO

argmin(y —X"w)? s.t. ||lwll; <~

lwljy = ZJL ;| is the £1-norm.

Lasso: least absolute shrinkage and selection operator.

_argmlnz =X W) 4 A|wlf

- Penalizes small w; more than ridge regression.
- Tolerates larger w; more than ridge regression.

Result:

- Wiasso has some components exactly equal to zero.
- Performs feature selection.
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THE 1-D CASE
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In the 1-d case, (x,y) = {x;,y;}

Least-squares solution: Wy = 2+
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THE 1-D CASE
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In the 1-d case, (x,y) = {x;,y;}

e Xy
Least-squares solution: Wys = S+
: . L E
Ridge regression solution: Wrigge = Fix
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THE 1-D CASE
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In the 1-d case, (x,y) = {x;,y;}

e Xy
Least-squares solution: Wys = S+
: . L E
Ridge regression solution: Wrigge = Fix

LASSO solution?
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OPTIMIZATION IN R

Use the optim function

Syntax:

optim(par, fn, gr = NULL, ...,
method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
'Brent'),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

fn: function to be optimized
gr: gradient function (calculate numerically if NULL)

par: initial value of parameter to be optimized (should be first
argument of fn)
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W = argmin £(w) = argmin 3 31, (v — wx;)? + A|w|
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W = argmin £(w) = argmin 3 31, (v — wx;)? + A|w|
At the minimum,

%
dw
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LASSO IN 1-D

W = argmin £(w) = argmin 3 37, (i — wx;)? + A|w|

At the minimum,
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LASSO IN 1-D

W = argmin £(w) = argmin 3 37, (i — wx;)? + A|w|
At the minimum,
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LASSO IN 1-D

W = argmin £(w) = argmin 3 37, (i — wx;)? + A|w|
At the minimum,
dc
dw
. djw|
= A——
Z(y WX; )X + W =30

=1

d|w]|

2

g -X~—|—W§ Xi 4+ A =0
i1)/,, L dw

2\d
Z; 1 YiXi — |W|
2171

W=

716



D VRS i A e S Tl

o dlw|
w What is Sl

- xTx

7
X

8/16



SUBGRADIENTS
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SUBGRADIENTS
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THE 1-D CASE
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THE 1-D CASE
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Soft threshold: Wiasso = SigN(Wors)(|Wois| — 575 )+
(X)+ =xifx > 0,else 0, and

sign(x) =+1ifx > 0else —1
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent
n

Lw) = (i —wx)” + Al|wl; (1)
i=1
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent
n

L(w) = (i —w'x)* + Al|w]; (1)
i=1

p p
= Z(yl - Z WjX,'}')Z + )\Z ‘Wj’ (2)
] 1 j=1

i=1 j=

1016



LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent

£(w) = Y205~ wTx)? + Nwl
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent

L(w) = (i —w'x)* + Al|w];

n p

p
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Here riy is the residual of obs. i:

lig =Yi — Z WiXij

j#d
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent

L(w) = (i —w'x)* + Al|w]; (1)

n p

p
= Z(yl - Z WJ'X,'}')Z + )\Z ‘Wj’ (2)
j=1

=1 j=1
n

= (rig — WoXia)* + Alwgl + C (3)
=1

Here riy is the residual of obs. i:
lig =Yi — Z WjXij
j#d
Eq(3) is just 1d LASSO! Can solve for w, by soft-thresholding.

Repeat 1016



CO-ORDINATE DESCENT

Initialize w to some arbitrary value

For dimension d, calculate the residual rg = (rig, -+, 'ng),
id = Yi — >_jzq WX for each observation i

Set Wyis = (()’(‘j))I;j where X4 is the dth column of X and we have:

~ M A A A
Wy = SIgN(Wo(s) (|Wors) — m)+
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~ M A A A
Wy = SIgN(Wo(s) (|Wors) — m)+

Repeat across dimensions d till convergence.
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CO-ORDINATE DESCENT

Initialize w to some arbitrary value

For dimension d, calculate the residual rg = (rig, -+, 'ng),
id = Yi — >_jzq WX for each observation i

Set Wyis = ((:j))I;Z where X4 is the dth column of X and we have:

~ M A A A
Wy = SIgN(Wo(s) (|Wors) — m)+

Repeat across dimensions d till convergence.

Does this work?
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DOES CO-ORDINATE DESCENT WORK?

For convex differentiable functions: yes
Convex function f: local optimum is a global minimum.

Local optimum for a differentiable function:

L W}:O

8W‘] ’ ’ aWp

viw) = |
At a stationary point of coordinate descent, the RHS is true.
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DOES CO-ORDINATE DESCENT WORK?

For convex non-differentiable functions: in general, no!
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DOES CO-ORDINATE DESCENT WORK?

For functions of the form: fiw) = g(w) + >-7__ hi(w;), where fis
convex and differentiable, h;’s are convex but not
differentiable: yes
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Competitive with state-of-the-art optimization for LASSO
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CO-ORDINATE DESCENT

Competitive with state-of-the-art optimization for LASSO

Since objective function is convex, any initialization works
(though some are better)
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Obtains the solution W for any A
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CO-ORDINATE DESCENT

Competitive with state-of-the-art optimization for LASSO

Since objective function is convex, any initialization works
(though some are better)

Obtains the solution W for any A

Can repeat for different \'s (though some ways are better).
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We want W's for a set of \'s
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PATHWISE CO-ORDINATE DESCENT
We want W's for a set of \'s

Pick a smallest and largest X (latter corresponding to W = 0)
Divide into equidistant grid points (typ. on logscale)
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Start with the largest A (solution = 0).
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Move to the next, using previous solution as initialization.

Converges after a few sweeps
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PATHWISE CO-ORDINATE DESCENT

We want W's for a set of \'s

Pick a smallest and largest X (latter corresponding to W = 0)
Divide into equidistant grid points (typ. on logscale)

Start with the largest A (solution = 0).

Move to the next, using previous solution as initialization.

Converges after a few sweeps
Repeat

This kind of a guided search is often faster, even if we just want
one \.
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