lectl5 http://127.0.0.1:8000/lect15.html

Lect. 15: Object-oriented programming in R

STAT598z: Intro. to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

In [1: options(repr.plot.width=5, repr.plot.height=3)

functions: an abstraction to encourage modular code:

® Reusables block of code
® Define operations to apply to any input

Object-oriented programming is another kind of abstraction

Object-oriented programming is another kind of abstraction:

® Fncapsulation: Pack data and functions into classes
® Polymorphism: Same functions act differently across classes
® |nheritence: Write child classes without copying parent classes

Components of OOP:

Classes: A template for an object (e.g. purdue)

® Defines ‘properties’ of objects (e.g. name, puid)
Objects An instance of a class (e.g. varao)

® Values assigned to properties (name = ‘vinayak’)
Methods Functions aware of properties of the object

® (e.g. isFaculty())

Why object oriented programming (OOP)?

1of5 3/19/19, 12:08 AM

lectl5 http://127.0.0.1:8000/lect15.html

1) Useful to group variables together
® An object is basically a list, with the class attribute set

® A constructor creates objects of a class

In [1: new purdue <- function(name, puid, employee) {
obj <- list(name = name, puid = puid, employee = employee)
class(obj) <- 'purdue'; return(obj)

varao <- new purdue('Vinayak', 1234, 'faculty')
print(varao)

Why object oriented programming (OOP)?

2) Tying methods to objects:

® |ncrease capability of software without increasing complexity for user (Chambers): e.g. print vs printMatrix
® Protects users from implementation details. User only needs to know an interface, and doesn’t care about insides.
(E.g. varao$employee =='faculty’ vsisFaculty(varao))

Object oriented (OO) systems in R
R has three OO systems:

® S3: most common OO system in R
® S4: like S3, but more formal
® Reference classes (RC): new, and like OO in other languages

We will concentrate on S3

Suppose varao is an object of class purdue
Can write a function print.purdue() and call when needed

Simpler/clearer to just use print()

Two OO paradigms:

Methods in classes

® Would look like varao.print()
® C++, python, java, (also the RC system in R)
® methods are ‘attached’ to objects

20f5 3/19/19, 12:08 AM

lectl5

30f5

Generic functions

® Would look like print(varao)

® The S3 and S4 systems in R

® Define method print.purdue() butcall print()

® print is a generic function that dispatches methods

In most OOP languages, methods belong to objects
In R, methods belong to generic functions

® uses UseMethod() to call method based on object class

methods gives you all methods associated with a generic

In []: methods(print)

In []1: methods('["')

Can also give all methods associated with a class

In [1: methods(class= 'matrix')

ftype() can tell generics from methods

In [1: library('pryr')
ftype(print)
ftype(print.data.frame)

Why do we need language support for OOP?
Can't we just modify if conditions inside print ?

® Don't want to have to change R code for e.g. print
R’s OOP support allows

® extending functionality without touching existing code
® fewer bugs

http://127.0.0.1:8000/lect15.html

3/19/19, 12:08 AM

lectl5 http://127.0.0.1:8000/lect15.html

The S3 system
S3 can be viewed as a naming convention:

® methods look like generic.class()
® c.g.print.table accessed via the generic print

print(varao) will

® |ook for print.purdue()
® |f no such function, will call print.default()

In []: print(varao)

In [1: print.purdue <- function(x) {
cat(x$name, ' (PuID:' , x$puid,') is ', x$employee,
' at Purdue\n')
}

print(varao)

Inheritence

® An object need not be assigned to just one class
® Classes are from most to least specific

In []: abl2 <- list(name = 'Alice' , puid = '12345' ,
employee = 'TA' , gpa = 3.8)
class(abl2) <- c('grad' , 'purdue')
print(abl2)

In []: inherits(abl2, 'purdue')

In []: gpa.grad <- function(x) print(x$gpa)
#gpa(abl2) # We don ' t have a generic yet!
gpa <- function(x) UseMethod('gpa')
class(abl2)
gpa(abl2)

In []: print(abl2)

Can also reuse methods using NextMethod ()

In []: print.grad <- function(x) {
NextMethod(print) # calls print.purdue
cat(' \n Has GPA ' , x$gpa, '\n')

}

In []: print(abl2)
print(varao)

40f5 3/19/19, 12:08 AM

lectl5 http://127.0.0.1:8000/lect15.html

Writing generic functions

We've seen how to write methods

To write a generic use UseMethod ()

gpa <- function(x) UseMethod('gpa')
Essentially creates vector:
paste0(‘gpa.’,c(class(x), default)
Searches from left to right for function that exists

If it finds one, calls it, else returns error

Example
Imagine a vector that you wanted to always view backwards
® A stack where new jobs are added to the top

You want to hide from the user that it’s stored forwards

In [1: my path <- c('right turn', 'cross street', 'climb stairs')
class(my path) <- 'stack'
print(my path)

In []: print.stack <- function(x) print(rev(x))
print(my _path) # Are you surprised this works?

In []: '[.stack' <- function(x,i) {
class(x) <- NULL # why do we need this?
x[length(x)+1-1i]
}

warning: this messes up your previous print function

In [1: my_path[3]

Object oriented programming

A powerful way to organize software

Allows you to build on existing software without changing it
Can avoid a bewildering set of new names for a generic task
S8 is a very informal system with no real checks

Can assign any class to any object

Can cause trouble if you're not careful

50f5 3/19/19, 12:08 AM

