
Lect. 15: Object-oriented programming in R

STAT598z: Intro. to computing for statistics

Vinayak Rao

Department of Statistics, Purdue University

In []: options(repr.plot.width=5, repr.plot.height=3)

functions: an abstraction to encourage modular code:

Reusables block of code
Define operations to apply to any input

Object-oriented programming is another kind of abstraction

Object-oriented programming is another kind of abstraction:

Encapsulation: Pack data and functions into classes
Polymorphism: Same functions act differently across classes
Inheritence: Write child classes without copying parent classes

Components of OOP:

Classes: A template for an object (e.g. purdue)

Defines ‘properties’ of objects (e.g. name, puid)

Objects An instance of a class (e.g. varao)

Values assigned to properties (name = ‘vinayak’)

Methods Functions aware of properties of the object

(e.g. isFaculty())

Why object oriented programming (OOP)?

lect15 http://127.0.0.1:8000/lect15.html

1 of 5 3/19/19, 12:08 AM

1) Useful to group variables together

An object is basically a list, with the class attribute set
A constructor creates objects of a class

In []: new_purdue <- function(name, puid, employee) {
 obj <- list(name = name, puid = puid, employee = employee)

class(obj) <- 'purdue'; return(obj)
}
varao <- new_purdue('Vinayak', 1234, 'faculty')
print(varao)

Why object oriented programming (OOP)?

2) Tying methods to objects:

Increase capability of software without increasing complexity for user (Chambers): e.g. print vs printMatrix
Protects users from implementation details. User only needs to know an interface, and doesn’t care about insides.
(E.g. varao$employee ==’faculty’ vs isFaculty(varao))

Object oriented (OO) systems in R

R has three OO systems:

S3: most common OO system in R
S4: like S3, but more formal
Reference classes (RC): new, and like OO in other languages

We will concentrate on S3

Suppose varao is an object of class purdue

Can write a function print.purdue() and call when needed

Simpler/clearer to just use print()

Two OO paradigms:

Methods in classes

Would look like varao.print()
C++, python, java, (also the RC system in R)
methods are ‘attached’ to objects

lect15 http://127.0.0.1:8000/lect15.html

2 of 5 3/19/19, 12:08 AM

Generic functions

Would look like print(varao)
The S3 and S4 systems in R
Define method print.purdue() but call print()
print is a generic function that dispatches methods

In most OOP languages, methods belong to objects

In R, methods belong to generic functions

uses UseMethod() to call method based on object class

methods gives you all methods associated with a generic

In []: methods(print)

In []: methods('[')

Can also give all methods associated with a class

In []: methods(class= 'matrix')

ftype() can tell generics from methods

In []: library('pryr')
ftype(print)
ftype(print.data.frame)

Why do we need language support for OOP?

Can’t we just modify if conditions inside print ?

Don’t want to have to change R code for e.g. print

R’s OOP support allows

extending functionality without touching existing code
fewer bugs

lect15 http://127.0.0.1:8000/lect15.html

3 of 5 3/19/19, 12:08 AM

The S3 system

S3 can be viewed as a naming convention:

methods look like generic.class()
e.g. print.table accessed via the generic print

print(varao) will

look for print.purdue()
If no such function, will call print.default()

In []: print(varao)

In []: print.purdue <- function(x) {
cat(x$name, ' (PuID:' , x$puid,') is ', x$employee,

' at Purdue\n')
}
print(varao)

Inheritence

An object need not be assigned to just one class
Classes are from most to least specific

In []: ab12 <- list(name = 'Alice' , puid = '12345' ,
 employee = 'TA' , gpa = 3.8)
class(ab12) <- c('grad' , 'purdue')
print(ab12)

In []: inherits(ab12, 'purdue')

In []: gpa.grad <- function(x) print(x$gpa)
#gpa(ab12) # We don ' t have a generic yet!
gpa <- function(x) UseMethod('gpa')
class(ab12)
gpa(ab12)

In []: print(ab12)

Can also reuse methods using NextMethod()

In []: print.grad <- function(x) {
NextMethod(print) # calls print.purdue
cat(' \n Has GPA ' , x$gpa, '\n')

}

In []: print(ab12)
print(varao)

lect15 http://127.0.0.1:8000/lect15.html

4 of 5 3/19/19, 12:08 AM

Writing generic functions

We’ve seen how to write methods

To write a generic use UseMethod()

gpa <- function(x) UseMethod('gpa')

Essentially creates vector:

paste0(‘gpa.’,c(class(x), default)

Searches from left to right for function that exists

If it finds one, calls it, else returns error

Example

Imagine a vector that you wanted to always view backwards

A stack where new jobs are added to the top

You want to hide from the user that it’s stored forwards

In []: my_path <- c('right turn', 'cross street', 'climb stairs')
class(my_path) <- 'stack'
print(my_path)

In []: print.stack <- function(x) print(rev(x))
print(my_path) # Are you surprised this works?

In []: '[.stack' <- function(x,i) {
class(x) <- NULL # why do we need this?

 x[length(x)+1-i]
}
warning: this messes up your previous print function

In []: my_path[3]

Object oriented programming

A powerful way to organize software

Allows you to build on existing software without changing it

Can avoid a bewildering set of new names for a generic task

S3 is a very informal system with no real checks

Can assign any class to any object

Can cause trouble if you’re not careful

lect15 http://127.0.0.1:8000/lect15.html

5 of 5 3/19/19, 12:08 AM

