LECTURE 10: *l₂* REGULARIZATION

STAT 598z: Introduction to computing for statistics

Vinayak Rao Department of Statistics, Purdue University

February 14, 2019

Consider linear regression:

$$
\mathbf{y} = \mathbf{x}^\top \mathbf{w} + \boldsymbol{\epsilon}
$$

Consider linear regression:

$$
\mathbf{y} = \mathbf{x}^\top \mathbf{w} + \epsilon
$$

In vector notation:

$$
\mathbf{y} = \mathbf{X}^T \mathbf{w} + \epsilon, \quad \mathbf{y} \in \Re^n, \mathbf{w} \in \Re^p, \mathbf{X} \in \Re^{p \times n}
$$

Ordinary least squares

Consider linear regression:

$$
y = \mathbf{x}^\top \mathbf{w} + \epsilon
$$

In vector notation:

$$
y = X^T w + \epsilon, \quad y \in \Re^n, w \in \Re^p, X \in \Re^{p \times n}
$$

 $\hat{\mathbf{w}} = \arg \min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}||^2 = \arg \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2$

Ordinary least squares

Problem:
\n
$$
\hat{\mathbf{w}} = \arg \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}\|^2 = \arg \min_{\mathbf{w}} \sum_{i=1}^n (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2
$$

Problem:
\n
$$
\hat{\mathbf{w}} = \arg \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}\|^2 = \arg \min_{\mathbf{w}} \sum_{i=1}^n (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2
$$

Solution: wˆ = (XX*⊤*) *−*1 (correlation in 1-d)

How to do this in R (without using lm)?

• Do not invert with solve and multiply!

How to do this in R (without using lm)?

- Do not invert with solve and multiply!
- Directly solve (XX[⊤])ŵ = Xy

 \hat{w} is an unbiased estimate of the true w

For a test vector x *test* we predict w *⊤*x *test* .

(Squared) prediction error: $PE^2 = \frac{1}{k}$ $\frac{1}{k}$ ∑ $_{i=1}^{k}$ (y_i^{test} − w[⊤]x $_i^{test}$)² \hat{w} is an unbiased estimate of the true w

For a test vector x *test* we predict w *⊤*x *test* .

(Squared) prediction error: $PE^2 = \frac{1}{k}$ $\frac{1}{k}$ ∑ $_{i=1}^{k}$ (y_i^{test} − w[⊤]x $_i^{test}$)² Can show:

- PE is has mean 0
- variance grows with number of features (*p*)

 \hat{w} is an unbiased estimate of the true w

For a test vector x *test* we predict w *⊤*x *test* .

(Squared) prediction error: $PE^2 = \frac{1}{k}$ $\frac{1}{k}$ ∑ $_{i=1}^{k}$ (y_i^{test} − w[⊤]x $_i^{test}$)² Can show:

- PE is has mean 0
- variance grows with number of features (*p*)

What if $p > n$?

• XX*⊤* is singular

REGULARIZATION

p > n:

• Cannot invert XX*⊤*

p > n:

- Cannot invert XX*⊤*
- We *can* invert if we add a small *λ* to the diagonal

 $\hat{\mathbf{w}}_{\lambda} = (\mathsf{XX}^\top + \lambda I)^{-1} \mathsf{X} \mathsf{y}$ (*I* is the identity matrix)

p > n:

- Cannot invert XX*⊤*
- We *can* invert if we add a small *λ* to the diagonal

 $\hat{\mathbf{w}}_{\lambda} = (\mathsf{XX}^\top + \lambda I)^{-1} \mathsf{X} \mathsf{y}$ (*I* is the identity matrix)

p > n:

- Cannot invert XX*⊤*
- We *can* invert if we add a small *λ* to the diagonal

 $\hat{\mathbf{w}}_{\lambda} = (\mathsf{XX}^\top + \lambda I)^{-1} \mathsf{X} \mathsf{y}$ (*I* is the identity matrix)

- \cdot $\lambda = 0$ recovers OLS
- Larger *λ* causes larger bias

p > n:

- Cannot invert XX*⊤*
- We *can* invert if we add a small *λ* to the diagonal

 $\hat{\mathbf{w}}_{\lambda} = (\mathsf{XX}^\top + \lambda I)^{-1} \mathsf{X} \mathsf{y}$ (*I* is the identity matrix)

- \cdot $\lambda = 0$ recovers OLS
- Larger *λ* causes larger bias
- \cdot $\lambda = \infty$?

p > n:

- Cannot invert XX*⊤*
- We *can* invert if we add a small *λ* to the diagonal

 $\hat{\mathbf{w}}_{\lambda} = (\mathsf{XX}^\top + \lambda I)^{-1} \mathsf{X} \mathsf{y}$ (*I* is the identity matrix)

- \cdot $\lambda = 0$ recovers OLS
- Larger *λ* causes larger bias
- \cdot $\lambda = \infty$? No variance!

p > n:

- Cannot invert XX*⊤*
- We *can* invert if we add a small *λ* to the diagonal

 $\hat{\mathbf{w}}_{\lambda} = (\mathsf{XX}^\top + \lambda I)^{-1} \mathsf{X} \mathsf{y}$ (*I* is the identity matrix)

Introducing *λ* makes problem well-posed, but introduces bias

- $\cdot \lambda = 0$ recovers OLS
- Larger *λ* causes larger bias
- \cdot $\lambda = \infty$? No variance!

λ trades-off bias and variance

Maybe a nonzero λ is actually good?

Recall
$$
\hat{\mathbf{w}} = (XX^{\top})^{-1}X\mathbf{y}
$$
 solves $\hat{\mathbf{w}} = \arg \min ||\mathbf{y} - X^{\top}\mathbf{w}||^2$

Recall
$$
\hat{\mathbf{w}} = (XX^T)^{-1}Xy
$$
 solves $\hat{\mathbf{w}} = \arg \min ||y - X^T \mathbf{w}||^2$
 $\hat{\mathbf{w}}_{\lambda} = (XX^T + \lambda I)^{-1}Xy$ solves

$$
\hat{\mathbf{w}}_{\lambda} = \mathrm{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \mathrm{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2
$$

Recall
$$
\hat{\mathbf{w}} = (XX^{\top})^{-1}Xy
$$
 solves $\hat{\mathbf{w}} = \arg \min ||y - X^{\top}w||^2$
 $\hat{\mathbf{w}}_{\lambda} = (XX^{\top} + \lambda I)^{-1}Xy$ solves

$$
\hat{\mathbf{w}}_{\lambda} = \mathrm{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \mathrm{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2
$$

*∥w∥*² = $\sum_{i=1}^{p} w_i^2$ is the squared ℓ_2 -norm *λ∥*w*∥*² is the *shrinkage penalty*.

Recall
$$
\hat{\mathbf{w}} = (XX^{\top})^{-1}Xy
$$
 solves $\hat{\mathbf{w}} = \arg \min ||y - X^{\top}w||^2$
 $\hat{\mathbf{w}}_{\lambda} = (XX^{\top} + \lambda I)^{-1}Xy$ solves

$$
\hat{\mathbf{w}}_{\lambda} = \mathrm{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \mathrm{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2
$$

*∥w∥*² = $\sum_{i=1}^{p} w_i^2$ is the squared ℓ_2 -norm *λ∥*w*∥*² is the *shrinkage penalty*.

Favours w's with smaller components

Recall
$$
\hat{\mathbf{w}} = (XX^T)^{-1}Xy
$$
 solves $\hat{\mathbf{w}} = \arg \min ||y - X^T \mathbf{w}||^2$
 $\hat{\mathbf{w}}_{\lambda} = (XX^T + \lambda I)^{-1}Xy$ solves

$$
\hat{\mathbf{w}}_{\lambda} = \mathrm{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \mathrm{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2
$$

*∥w∥*² = $\sum_{i=1}^{p} w_i^2$ is the squared ℓ_2 -norm

*λ∥*w*∥*² is the *shrinkage penalty*.

Favours w's with smaller components

λ trades of small training error with 'simple' solutions

Recall
$$
\hat{\mathbf{w}} = (XX^T)^{-1}Xy
$$
 solves $\hat{\mathbf{w}} = \arg \min ||y - X^T \mathbf{w}||^2$
 $\hat{\mathbf{w}}_{\lambda} = (XX^T + \lambda I)^{-1}Xy$ solves

$$
\hat{\mathbf{w}}_{\lambda} = \mathrm{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \mathrm{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2
$$

*∥w∥*² = $\sum_{i=1}^{p} w_i^2$ is the squared ℓ_2 -norm

*λ∥*w*∥*² is the *shrinkage penalty*.

Favours w's with smaller components

λ trades of small training error with 'simple' solutions

*ℓ*2/ridge/Tikhonov regularization

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

In the 1-dimensional case,

$$
\hat{w}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

In the 1-dimensional case,

$$
\hat{w}_{\lambda} = (\mathbf{x}^{\top}\mathbf{x} + \lambda I_{p})^{-1}\mathbf{x}^{\top}\mathbf{y}
$$

$$
= \frac{\mathbf{x}^{\top}\mathbf{x}}{(\mathbf{x}^{\top}\mathbf{x} + \lambda I_{p})}\frac{\mathbf{x}^{\top}\mathbf{y}}{\mathbf{x}^{\top}\mathbf{x}}
$$

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

In the 1-dimensional case,

$$
\hat{w}_{\lambda} = (\mathbf{x}^{\top}\mathbf{x} + \lambda I_{p})^{-1}\mathbf{x}^{\top}\mathbf{y}
$$
\n
$$
= \frac{\mathbf{x}^{\top}\mathbf{x}}{(\mathbf{x}^{\top}\mathbf{x} + \lambda I_{p})}\frac{\mathbf{x}^{\top}\mathbf{y}}{\mathbf{x}^{\top}\mathbf{x}}
$$
\n
$$
= c \hat{w} \qquad (c < 1)
$$

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}
$$

In the 1-dimensional case,

$$
\hat{w}_{\lambda} = (x^{\top}x + \lambda I_{p})^{-1}x^{\top}y
$$

$$
= \frac{x^{\top}x}{(x^{\top}x + \lambda I_{p})} \frac{x^{\top}y}{x^{\top}x}
$$

$$
= c \hat{w} \qquad (c < 1)
$$

Shrinks least-squares solution.

Credit data set (average credit card debt)

James, Witten, Hastic and Tibshirani

- Pick a set of *λ*'s
- For *k*th fold of cross-validation:

- Pick a set of *λ*'s
- For *k*th fold of cross-validation:
	- For each *λ*:
		- Solve the regularized least squares problem on training data.
		- Evaluate estimated w on held-out data (call this *PEλ,k*).

- Pick a set of *λ*'s
- For *k*th fold of cross-validation:
	- For each *λ*:
		- Solve the regularized least squares problem on training data.
		- Evaluate estimated w on held-out data (call this *PEλ,k*).
- \cdot Pick $\hat{\lambda}$ = argmin mean(*PE*_{λ})
	- or (argmin (mean(*PEλ*) + stderr(*PEλ*)))

- Pick a set of *λ*'s
- For *k*th fold of cross-validation:
	- For each *λ*:
		- Solve the regularized least squares problem on training data.
		- Evaluate estimated w on held-out data (call this *PEλ,k*).
- \cdot Pick $\hat{\lambda}$ = argmin mean(*PE*_{λ})
	- or (argmin (mean(*PEλ*) + stderr(*PEλ*)))
- \cdot Having chosen $\hat{\lambda}$ solve regularized least square on all data

Does this work?

Does this work?

Ridge regression improves performance by reducing variance

Does this work?

Ridge regression improves performance by reducing variance

- does not perform feature selection
- \cdot just shrinks components of **w** towards 0

For the former: Lasso

Regularization as constrained optimization

argmin(y *−* X *⊤*w) ² ⁺ *^λ∥*w*[∥]* 2 2 is equivalent to argmin(y *−* X *⊤*w) 2 *s.t. ∥*w*∥* 2 ² *≤ γ*

(Note: *γ* will depend on data)

Regularization as constrained optimization

argmin(y *−* X *⊤*w) ² ⁺ *^λ∥*w*[∥]* 2 2 is equivalent to

argmin(y *−* X *⊤*w) 2 *s.t. ∥*w*∥* 2 ² *≤ γ*

(Note: *γ* will depend on data)

First problem: regularized optimization Second problem: constrained optimization

Regularization as constrained optimization

argmin(y *−* X *⊤*w) ² ⁺ *^λ∥*w*[∥]* 2 2 is equivalent to

argmin(y *−* X *⊤*w) 2 *s.t. ∥*w*∥* 2 ² *≤ γ*

(Note: *γ* will depend on data)

First problem: regularized optimization Second problem: constrained optimization

