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Ordinary least squares

Consider linear regression:

y = x⊤w+ ϵ

In vector notation:

y = XTw+ ϵ, y ∈ ℜn,w ∈ ℜp, X ∈ ℜp×n

ŵ = arg minw ∥y− X⊤w∥2 = arg minw
∑n

i=1(yi − x⊤i w)2
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Ordinary least squares

Problem:
ŵ = arg minw ∥y− X⊤w∥2 = arg minw

n∑
i=1

(yi − x⊤i w)2

Solution:
ŵ = (XX⊤)−1Xy (correlation in 1-d)

(XX⊤) Xy

How to do this in R (without using lm)?
• Do not invert with solve and multiply!
• Directly solve (XX⊤)ŵ = Xy
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Prediction error

ŵ is an unbiased estimate of the true w

For a test vector xtest we predict w⊤xtest.

(Squared) prediction error: PE2 = 1
k
∑k

i=1(ytesti − w⊤xtesti )2

Can show:

• PE is has mean 0
• variance grows with number of features (p)

What if p > n?

• XX⊤ is singular
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Regularization

p > n:

• Cannot invert XX⊤

• We can invert if we add a small λ to the diagonal

ŵλ = (XX⊤ + λI)−1Xy (I is the identity matrix)

Introducing λ makes problem well-posed, but introduces bias

• λ = 0 recovers OLS
• Larger λ causes larger bias
• λ = ∞? No variance!

λ trades-off bias and variance

Maybe a nonzero λ is actually good?
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Ridge regression (a.k.a. Tikhonov regularization)

Recall ŵ = (XX⊤)−1Xy solves ŵ = arg min ∥y− X⊤w∥2

ŵλ = (XX⊤ + λI)−1Xy solves

ŵλ = argminLλ(w) := argmin
n∑
i=1

(yi − x⊤i w)2 + λ∥w∥22

∥w∥22 =
∑p

i=1 w
2
i is the squared ℓ2-norm

λ∥w∥2 is the shrinkage penalty.

Favours w’s with smaller components

λ trades of small training error with ‘simple’ solutions

ℓ2/ridge/Tikhonov regularization
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Ridge regression (solution)

Simple modification of the least-squares solution:

ŵλ = (X⊤X+ λIp)−1X⊤y

In the 1-dimensional case,

ŵλ = (x⊤x+ λIp)−1x⊤y

=
x⊤x

(x⊤x+ λIp)
x⊤y
x⊤x

= c ŵ (c < 1)

Shrinks least-squares solution.
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= c ŵ (c < 1)

Shrinks least-squares solution.

6/10



Ridge regression (solution)

Simple modification of the least-squares solution:
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ŵλ = (x⊤x+ λIp)−1x⊤y

=
x⊤x

(x⊤x+ λIp)
x⊤y
x⊤x
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Ridge regression

Credit data set (average credit card debt)
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James, Witten, Hastic and Tibshirani
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How do we choose λ?

Cross-validaton:

• Pick a set of λ’s
• For kth fold of cross-validation:
• For each λ:
• Solve the regularized least squares problem on training data.
• Evaluate estimated w on held-out data (call this PEλ,k).

• Pick λ̂ = argmin mean(PEλ)
or (argmin (mean(PEλ) + stderr(PEλ)))

• Having chosen λ̂ solve regularized least square on all data
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Does this work?
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Ridge regression improves performance by reducing variance

• does not perform feature selection
• just shrinks components of w towards 0

For the former: Lasso
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Regularization as constrained optimization

argmin(y− X⊤w)2 + λ∥w∥22 is equivalent to

argmin(y− X⊤w)2 s.t. ∥w∥22 ≤ γ

(Note: γ will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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