Lecture 9: Supervised learning

STAT598z: Intro. to computing for statistics

Vinayak Rao

Department of Statistics, Purdue University

In []: options(repr.plot.width=4, repr.plot.height=3)

Supervised learning

We are given training data $(X, Y)=\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$

- X: independent variables, inputs, predictors, features
- Y: dependent variables, outputs, response
$x \in \mathbb{R}^{P}$ (usually)
- regression: $y \in \mathbb{R}$
- classification: $y \in\{0,1\}$
- structured prediction: More complicated high-dimensional spaces with dependent components (e.g. the space of images or sentences)

We assume $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}$
ε is noise (includes randomness and approximations)

- Independently and identically distributed (i.i.d.) according to some probability distrib. (e.g. Gaussian)

Given the training set (X, Y), we want to estimate f :

- to study the relation between x and y
- to make predictions of y 's for unobserved x 's

Good predictors can be hard to interpret

Parametric learning

Index functions f by a finite-dimensional parameter vector
E.g. linear regression

- Parameters are coefficients of a hyperplane
- Parameters have a clear interpretation
- Can be a bad approximation of reality

Linear regression

via the lm function in R

In []: library('ggplot2')
DataIncm <- read.table('Data/Income2.csv',header=T, sep=',')
ggplot(DataIncm) + geom_point(aes(x=Education, $y=$ Income))

In []: fit <- lm(Income ~ Education, DataIncm); fit

The first argument is a formula

- takes the form response ~ predictors
- response is a linear combination of predictors
- above we have just one predictor: Education
- Income $=\beta_{1} \cdot$ Education $+\beta_{0}+\epsilon$

Second argument unnecessary if variables in formula exist in current environment
See documentation for other optional arguments

Can print fit:

In []: fit

This is not all the information in fit (why?)

- Try typeof(), class(), str()
- Try plotting it

In []: print.default(fit)

Observe fit contains the entire dataset!
Can disable with model = FALSE option

Can directly plot with ggplot :

In []: plt1 <- ggplot(DataIncm, aes(x=Education, y = Income)) + geom_point(size=2, color='blue') + theme(text=element_text(size=10))

In []: plt1 + geom_smooth(method='lm', se=FALSE, \#Disable std. errors color='magenta', size=2)

Can regress against Seniority

In []: fit <- lm(Income ~ Seniority, DataIncm)

Can regress against both Education and Seniority

In []: fit <- lm(Income ~ Education + Seniority, DataIncm)

- + does not mean input is sum of Educ. and Sen.

Rather: Income $=\beta_{2} \cdot$ Seniority $+\beta_{1} \cdot$ Education $+\beta_{0}+\varepsilon$

For the former, use I:
fit <- Im(Income ~ I(Education + Seniority), Datalncm)

- Income $=\beta_{1} \cdot($ Seniority + Education $)+\beta_{0}+\varepsilon$

Prediction

In []: fit <- lm(Income ~ Education + Seniority, DataIncm)

How do we make predictions at a new set of locations? E.g. $(15,60)$ and $(20,160)$?

In []: pred_locn <- data.frame(Education=c(15,20), Seniority= c(60,160)) predict.lm(fit, pred_locn)

In []: edu_pred <- 10:25
sen_pred <- seq(0,200,10)
pred <- data.frame(Education=rep(edu_pred, length(sen_pred)), Seniority=rep(sen_prē, each=length(edu_pred)))
p_val <- predict.lm(fit, pred)
pred\$p_val = p_val

```
In [ ]: plt <- ggplot(DataIncm, aes(x=Education, y=Seniority,
    color=Income))+
    geom_tile(data=pred, aes(x=Education, y=Seniority,
    color=p_val, fill=p_val)) +
    geom_point(size=1) + theme(text=element_text(size=10)) +
    scale color continuous(low='blue', high='red') +
    scale_fill_continuous(low='blue', high='red') +
    geom_point(shape=1,size=1,color='black') +
        guídes(fill=FALSE) # Remove legend for 'fill'
```

In []: plt

Specifying a model for lm

Symbol	Meaning	Example
+	Include variable	$x+y$
$:$	Interaction between vars	$x+y+z+x: z+y: z$
\star	Variables and interactions	$(x+y)^{*} z$
\wedge	Vars and intrcns to some order	$(x+y+z)^{\wedge} 3$
-	Delete variable	$(x+y+z)^{\wedge} 3-x: y: z$
poly	Polynomial terms	poly $(x, 3)+(x+y)^{*} z$
I	New combination of vars	$I\left(x^{\star} y+z\right)$
1	Intercept	$x-1$

See documentation and http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html (http://ww2.coastal.edu/kingw /statistics/R-tutorials/formulae.html)

Generalized linear model

A linear model with Gaussian noise is often inappropriate. E.g.

- response is always positive
- count valued response
- $\{0,1\}$ or binary-valued as in classification

A better model might be:
response $=g\left(\sum_{i=1}^{N} \beta_{i} \cdot\right.$ predictor $\left._{i}\right)+\varepsilon$
g is a 'link' function, ε is no longer Gaussian
Can fit in R with glm () (see documentation)

Nonparametric methods

No longer limit yourself to a parametric family of functions
Much more flexible
Often much better prediction
Complexity of f can grow with size of dataset
Often hard to interpret

k-nearest neighbors

Given training data (X, Y)
Given a new x^{*}, what is the corresponding y^{*} ?
Find the k -nearest neigbours of x^{*}. Then:

- Classification: Predicted y^{*} is the majority class-label of the neighbors
- Regression: Predicted y^{*} is the average of the y^{\prime} 's of the neighbors

3-nearest neighbors

(*An Introduction to Statistical Learning*, James, Witten, Hastie and Tibshirani)

Complexity of decision boundary grows with size of training set: 'Nonparametric'

Pros:

- Very intuitive computational algorithm.
- Very easy to 'fit' data (you don't, you just store it)
- Tends to outperform more complicated models.
- Easy to develop more complicated extensions E.g. locally-adaptive kNN.
- Exists theory for such models.

Cons:

- Cost of prediction grows linearly with training set size (can be expensive for large datasets)
- Tends to break down in high-dimensional spaces.
- Exempler-based approaches are hard to interpret.

10-nearest neighbors

(*An Introduction to Statistical Learning*, James, Witten, Hastie and Tibshirani)

KNN: K=1

KNN: $\mathrm{K}=\mathbf{1 0 0}$

(*An Introduction to Statistical Learning ${ }^{*}$, James, Witten, Hastie and Tibshirani)

- What distance function do we use? Typically Euclidean.
- What k do we use? Typically $3,5,10$

Usually chosen by cross-validation (more later)

Large k : smooth decision boundary
Small k: complex decision boundary (with local variations)

- k is a measure of model-complexity

How do we perform model selection?
Do we prefer simple or complex models?

Bias-variance trade-off

Overly simple models

- cause underfitting (or bias)
- ignore important aspects of training data

Overly complex models

- cause overfitting (or variance)
- can be overly sensitive to noise in training data

Complex models reduce training error, but generalize poorly.

Cross-validation

How do we estimate generalization ability? Create an unseen test dataset.

Cross-validation:

- Split your data into two sets, a training and test dataset.
- Fit all models on training set.
- Evaluate all models on test set.
- Pick best model.

Choosing k by cross-validation

Often 50-50 or 70-30 training-test splits are used
Too small a test set:

- Noisy estimates of generalization error

Too small a training set:

- Wasting training data
- Model selected using small training set may be simpler that model relevant to the entire training set

k-fold crossvalidation

Split your data into k-blocks.
For $\mathrm{i}=1$ to k :

- Fit algorithm on all except block i.
- Test algorithm on block i. Overall generalization error is the average of all errors.
- Can use larger training sets
- Can get confidence intervals on generalization error.
$\mathrm{k}=\mathrm{N}$: leave-one-out cross-validation

k-fold crossvalidation

(*An Introduction to Statistical Learning*, James, Witten, Hastie and Tibshirani)

