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Lecture 9: Supervised learning

STAT598z: Intro. to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

In [ ]1: options(repr.plot.width=4, repr.plot.height=3)

Supervised learning
We are given training data (X, Y) = {(x1,y1), -**, (xn, yn)}

® X: independent variables, inputs, predictors, features
® Y: dependent variables, outputs, response

x € R” (usually)

® regression: y € R

e classification: y € {0, 1}

® structured prediction: More complicated high-dimensional spaces with dependent components (e.g. the space of
images or sentences)

We assume y; = f(x;) + €;
€ is noise (includes randomness and approximations)

® Independently and identically distributed (i.i.d.) according to some probability distrib. (e.g. Gaussian)

Given the training set (X, Y), we want to estimate f:

® to study the relation between x and y
® to make predictions of y’s for unobserved x’s

Good predictors can be hard to interpret
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Parametric learning
Index functions f by a finite-dimensional parameter vector
E.g. linear regression

® Parameters are coefficients of a hyperplane
® Parameters have a clear interpretation
® Can be a bad approximation of reality

Linear regression

via the Im function in R

In [ ]1: library('ggplot2')
DataIncm <- read.table('Data/Income2.csv',header=T,sep=",")
ggplot(DataIncm) + geom point(aes(x=Education,y=Income))

In [ ]: fit <- Um(Income ~ Education, DataIncm); fit

The first argument is a formula

® takes the form response ~ predictors

® response is a linear combination of predictors
® above we have just one predictor: Education
e Income = B, - Education + fy + €

Second argument unnecessary if variables in formula exist in current environment

See documentation for other optional arguments

Can print fit:

In [ ]: fit

This is not all the information in fit (why?)

® Try typeof (), class(),str()
® Try plotting it

In [ 1: print.default(fit)

Observe fit contains the entire dataset!

Can disable with model = FALSE option
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Can directly plot with ggplot :

In [ ]: pltl <- ggplot(DataIncm, aes(x=Education, y = Income)) +
geom point(size=2, color='blue') +
theme (text=element_text(size=10))

In [ ]1: pltl + geom_smooth(method='lm', se=FALSE, #Disable std. errors
color="'magenta', size=2)

Can regress against Seniority

In [ ]: fit <- lm(Income ~ Seniority, Datalncm)

Can regress against both Education and Seniority

In [ ]1: fit <- lm(Income ~ Education + Seniority, DataIncm)

® + does not mean input is sum of Educ. and Sen.

Rather: Income = [, - Seniority + 1 - Education + By + €

For the former, use I:

fit <- Im(Income ~ I(Education + Seniority), Datalncm)

e Income = B - (Seniority + Education) + fy + €

Prediction

In [ ]1: fit <- lm(Income ~ Education + Seniority, DataIncm)

How do we make predictions at a new set of locations? E.g. (15, 60) and (20, 160)?

In [ ]: pred locn <- data.frame(Education=c(15,20), Seniority= c(60,160))
predict.lm(fit, pred locn)

In [ ]1: edu pred <- 10:25
sen pred <- seq(0,200,10)
pred <- data.frame(Education=rep(edu_pred, length(sen pred)),
Seniority=rep(sen_pred, each=length(edu pred) ))
p val <- predict.lm(fit, pred)
pred$p val = p val
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In [ 1: plt <- ggplot(DatalIncm, aes(x=Education, y=Seniority,
color=Income) )+
geom_tile(data=pred, aes(x=Education, y=Seniority,
color=p val, fill=p val)) +
geom _point(size=1l) + theme(text=element text(size=10)) +
scale_color_continuous(low="'blue', high='red') +
scale fill continuous(low='blue', high='red') +
geom _point(shape=1,size=1,color="'black') +
guides(fill=FALSE) # Remove legend for 'fill'

In [ ]: plt

Specifying a model for 1m

Symbol | Meaning Example
+ Include variable X+Yy

Interaction between vars X+Y+z2+XzZ+Yyz
* Variables and interactions (x+y)*z
A Vars and intrcns to some order | (x + y + 2)*3
- Delete variable (X+y+2)"3-xyz
poly Polynomial terms poly(x,3) + (x +y) * z
| New combination of vars I(x*y + 2)
1 Intercept X -1

See documentation and http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html (http://ww2.coastal.edu/kingw
/statistics/R-tutorials/formulae.html)

Generalized linear model
A linear model with Gaussian noise is often inappropriate. E.g.

® response is always positive
® count valued response
® {0, 1} or binary-valued as in classification

A better model might be:
response = g(Zf.il pi - predictor;) + €
g is a'link’ function, € is no longer Gaussian

Can fitin R with glm() (see documentation)
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Nonparametric methods

No longer limit yourself to a parametric family of functions

Much more flexible
Often much better prediction
Complexity of f can grow with size of dataset

Often hard to interpret

k-nearest neighbors
Given training data (X, Y)
Given a new x* , what is the corresponding y*?

Find the k-nearest neigbours of x* . Then:

® Classification: Predicted y* is the majority class-label of the neighbors

® Regression: Predicted y* is the average of the y’s of the neighbors

3-nearest neighbors

http://127.0.0.1:8000/lect9.html

(*An Introduction to Statistical Learning*, James, Witten, Hastie and

Tibshirani)
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Complexity of decision boundary grows with size of training set: ‘Nonparametric’

Pros:

® \/ery intuitive computational algorithm.

® \/ery easy to ‘fit’ data (you don't, you just store it)

® Tends to outperform more complicated models.

® Easy to develop more complicated extensions E.g. locally-adaptive KNN.
® Exists theory for such models.

Cons:

® Cost of prediction grows linearly with training set size (can be expensive for large datasets)
® Tends to break down in high-dimensional spaces.
® Exempler-based approaches are hard to interpret.

60f11
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10-nearest neighbors

KNN: K=10

<
Xa
(*An Introduction to Statistical Learning*, James, Witten, Hastie and
Tibshirani)
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KNN: K=1
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KNN: K=100

(*An Introduction to Statistical Learning*, James, Witten, Hastie and

Tibshirani)

® \What distance function do we use? Typically Euclidean.
® What k do we use? Typically 3, 5, 10

Usually chosen by cross-validation (more later)

Large k: smooth decision boundary
Small k: complex decision boundary (with local variations)

® k is a measure of model-complexity

How do we perform model selection?

Do we prefer simple or complex models?

Bias-variance trade-off
Overly simple models

® cause underfitting (or bias)
® ignore important aspects of training data

Overly complex models

® cause overfitting (or variance)
® can be overly sensitive to noise in training data
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Complex models reduce training error, but generalize poorly.

Cross-validation

How do we estimate generalization ability? Create an unseen test dataset.

Cross-validation:

® Split your data into two sets, a training and test dataset.
® Fit all models on training set.

® Evaluate all models on test set.

® Pick best model.

Choosing k by cross-validation
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Often 50-50 or 70-30 training-test splits are used
Too small a test set:

® Noisy estimates of generalization error

Too small a training set:

® Wasting training data
® Model selected using small training set may be simpler that model relevant to the entire training set

k-fold crossvalidation
Split your data into k-blocks.
Fori=1tok:

® Fit algorithm on all except block i.
® Test algorithm on block i. Overall generalization error is the average of all errors.

® Can use larger training sets
® Can get confidence intervals on generalization error.

k = N: leave-one-out cross-validation
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k-fold crossvalidation
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(*An Introduction to Statistical Learning*, James, Witten, Hastie and

Tibshirani)
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