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Markov chain Monte Carlo

Recall Monte Carlo: produce independent samples from p(x),
and use sample averages to approximate expectations.

In high dims, hard to even sample from p(x)!

Rather than making independent proposals, exploit previous
proposals to make good proposals

Allows us to find and explore useful regions of X-space

Simplest case: use current proposal to make a new proposal

The resulting algorithm: Markov chain Monte Carlo.

(A Markov chain: future independent of past given present)

1/17



Markov chain Monte Carlo

Recall Monte Carlo: produce independent samples from p(x),
and use sample averages to approximate expectations.

In high dims, hard to even sample from p(x)!

Rather than making independent proposals, exploit previous
proposals to make good proposals

Allows us to find and explore useful regions of X-space

Simplest case: use current proposal to make a new proposal

The resulting algorithm: Markov chain Monte Carlo.

(A Markov chain: future independent of past given present)

1/17



Markov chain Monte Carlo

Recall Monte Carlo: produce independent samples from p(x),
and use sample averages to approximate expectations.

In high dims, hard to even sample from p(x)!

Rather than making independent proposals, exploit previous
proposals to make good proposals

Allows us to find and explore useful regions of X-space

Simplest case: use current proposal to make a new proposal

The resulting algorithm: Markov chain Monte Carlo.

(A Markov chain: future independent of past given present)

1/17



Markov chain Monte Carlo

The Rosenbrock density (a.k.a. the banana density)

p(x, y) ∝ exp
(
−(a− x)2 − b(y− x2)2

)
(here a = .3,b = 3)
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Markov chain Monte Carlo

A random walk:

• start somewhere arbitrary
• make local moves
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Markov chain Monte Carlo

• Discard initial ‘burn-in’ samples
• Use remaining to obtain Monte Carlo estimates:

1
N

N∑
i=1

f(xi) ≈ Ep[f]
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Markov chain Monte Carlo
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A random walk over a 2-d Gaussian
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Markov chain Monte Carlo

• The goal of MCMC if to find a set of local moves that produce
samples (asymtotically) from the right distribution

• The art of MCMC is to find local moves than coverge rapidly
(a chain that ‘mixes rapidly’)
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MCMC

Let element xi of the chain have distribution pi
Write T(xi → xi+1) = p(xi+1|xi) for the transition kernel of the
chain.

Then, the (i+ 1)st element has distribution

pi+1(xi+1) =
∫
T(xi → xi+1)pi(xi)dxi

p is the stationary/equilibrium distribution of the Markov
chain if

p(x′) =
∫
T(x→ x′)p(x)dx

7/17



MCMC: a first look

For a transition function T(· → ·) with stationary distribution p

• Initialize x0 from some distribution p0
• Run a Markov chain for (B+ N) iterations with transition T

All xi for i > B are approximately distributed as p

• Discard the first B ‘burn-in’ samples
• Calculate Monte Carlo average with remaining N samples

1
N

B+N∑
i=B+1

f(xi) ≈ Ep[f]

Markov chain Monte Carlo estimate
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MCMC

We want to sample from a probability distribution p(x) = f(x)
Z

How do we design an appropriate transition kernel T(· → ·)?

Different MCMC algorithms take different approaches

The simplest is the Metropolis-Hastings algorithm
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Metropolis-Hastings

Metropolis-Hastings (MH):

• Let current state be xi
• Propose a new state from q(w|xi)

If we set xi+1 = w the resulting Markov chain will have the
wrong stationary distribution

• Instead, set xi+i = w (accept) with probability

min(1, p(w)q(xi|w)p(xi)q(w|xi)
) = min(1, f(w)q(xi|w)f(xi)q(w|xi)

)

Otherwise, set xi+i = xi (reject)

Under mild conditions, this corrected Markov chain has the
right stationary distribution
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Metropolis-Hastings

Works for any choice of q so long as it’s possible to get from
any part of space to any other (eventually)

Acceptance probability:

min(1, p(y)q(xi|y)p(xi)q(y|xi)
) = min(1, f(y)q(xi|y)f(xi)q(y|xi)

)

We just have to evaluate the target density p(x) = f(x)
Z up to a

proportionality constant

Don’t need the normalization constant Z!

We only need to

• sample from q
• evaluate transition probabilities q(y|x)
• evaluate the target density upto a normalization constant
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Choice of proposal distribution q

• Common choice is a Gaussian centered at previous sample:

w|xi ∼ N (xi, σ2)

• Equivalently,

w = xi + εi, εi ∼ N (0, σ2)

For this proposal q(w|xi) = q(xi|w)

min(1, f(w)q(xi|w)f(xi)q(w|xi)
) = min

(
1, f(w)f(xi)

)

• always accept better proposals
• sometimes accept worse proposals
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The Metropolis-Hastings algorithm

How do we chose the proposal variance?
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σ2 = 1
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The Metropolis-Hastings algorithm

How do we chose the proposal variance?
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Gibbs sampling

Sample one component at a time
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Gibbs sampling

Consider a set of variables (x(1), · · · , x(d))

Gibbs sampling cycles though these sequentially (or randomly)

At the ith step, it updates x(i) conditioned on the the rest:

x(i) ∼ p(x(i)|x(1), . . . , x(i− 1), x(i+ 1), . . . , x(n))

Often these 1-d conditionals are much simpler than the joint

Think of coordinate descent
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