# LECTURE 19: MONTE CARLO METHODS <br> STAT 598z: Introduction to computing for statistics 

Vinayak Rao
Department of Statistics, Purdue University
April 9, 2018

## Monte Carlo integration

We want to calculate integrals/summations

- often expectations w.r.t. some probability distribution $p(x)$

$$
\mu:=\mathbb{E}_{p}[f]=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x
$$

## Monte Carlo integration

We want to calculate integrals/summations

- often expectations w.r.t. some probability distribution $p(x)$

$$
\mu:=\mathbb{E}_{p}[f]=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x
$$

What is the prob. a game of patience (solitaire) is solvable?

$$
P(\text { Solvable })=\frac{1}{|\Pi|} \sum_{\Pi} \mathbb{1}(\Pi \text { is solvable })
$$

## Monte Carlo integration

We want to calculate integrals/summations

- often expectations w.r.t. some probability distribution $p(x)$

$$
\mu:=\mathbb{E}_{p}[f]=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x
$$

If we drop 3 points on the plane, each Gaussian distributed, what is average the area of the resulting triangle?

$$
\mathbb{E}[A]=\int A\left(x_{1}, x_{2}, x_{3}\right) p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}
$$

## Monte Carlo integration

We want to calculate integrals/summations

- often expectations w.r.t. some probability distribution $p(x)$

$$
\mu:=\mathbb{E}_{p}[f]=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x
$$

For dataset $(X, y)$, what is is average loss if you randomly choose a weight-vector according to some distribution (e.g. rnorm)?

$$
\mathbb{E}_{w}[\mathcal{L}(X, y)]=\int\left(y-w^{\top} X\right)^{2} p(w) \mathrm{d} w
$$

## Monte Carlo integration

We want to calculate integrals:

$$
\mu:=\mathbb{E}_{p}[f]=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x
$$

## Monte Carlo integration

We want to calculate integrals:

$$
\mu:=\mathbb{E}_{p}[f]=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x
$$

Sampling approximation: rather than visit all points in $\mathcal{X}$, calculate a summation over a finite set.

Monte Carlo approximation:

- Obtain points by sampling from $p(x)$

$$
\begin{gathered}
x_{i} \sim p \\
\hat{\mu} \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{gathered}
$$

## Monte Carlo integration

Is this a good idea?

- Very simple
- Unbiased


## Monte Carlo integration

Is this a good idea?

- Very simple
- Unbiased

If $x_{i} \sim p$,

$$
\mathbb{E}_{p}[\hat{\mu}]=\mathbb{E}_{p}\left[\frac{1}{N} \sum_{i=1}^{N} f(x)\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p}[f]=\mu \quad \text { Unbiased estimate }
$$

## Monte Carlo integration

Is this a good idea?

- Very simple
- Unbiased

If $x_{i} \sim p$,

$$
\mathbb{E}_{p}[\hat{\mu}]=\mathbb{E}_{p}\left[\frac{1}{N} \sum_{i=1}^{N} f(x)\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p}[f]=\mu \quad \text { Unbiased estimate }
$$

$$
\operatorname{Var}_{p}[\hat{\mu}]=\frac{1}{N} \operatorname{Var}_{p}[f], \quad \text { Error }=\operatorname{StdDev} \propto N^{-1 / 2}
$$

## Monte Carlo integration

Is this a good idea?

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible


## Monte Carlo integration

Is this a good idea?

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible E.g. Simpson's rule in $d$-dimensions, with $N$ grid points:

$$
\text { error } \propto N^{-4 / d}
$$

## Monte Carlo integration

Is this a good idea?

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible E.g. Simpson's rule in $d$-dimensions, with $N$ grid points:

$$
\text { error } \propto N^{-4 / d}
$$

Monte Carlo integration:

$$
\text { error } \propto N^{-1 / 2}
$$

## Monte Carlo integration

Is this a good idea?

- In low-dims, use numerical methods like quadrature
- In high-dims, numerical methods become infeasible E.g. Simpson's rule in $d$-dimensions, with $N$ grid points:

$$
\text { error } \propto N^{-4 / d}
$$

Monte Carlo integration:

$$
\text { error } \propto N^{-1 / 2}
$$

Independent of dimensionality!

## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## No!

## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## No!

- Instead: pseudorandom numbers.


## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## No!

- Instead: pseudorandom numbers.
- Map a seed to a 'random-looking' sequence.


## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## No!

- Instead: pseudorandom numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html


## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## No!

- Instead: pseudorandom numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html
- Upside: Can use seeds for reproducibility or debugging

```
set.seed(1)
```


## Generating random variables

- The simplest useful probability distribution Unif( 0,1 ).
- In theory, can be used to generate any other RV.
- Easy to generate uniform RVs on a deterministic computer?


## No!

- Instead: pseudorandom numbers.
- Map a seed to a 'random-looking' sequence.
- Downside: http://boallen.com/random-numbers.html
- Upside: Can use seeds for reproducibility or debugging

```
set.seed(1)
```

- Careful with batch/parallel processing.


## Generating random variables

In R we generate uniform random variables via runif
Additional functions include
rnorm(), rgamma(), rexp(), sample() etc.

## Generating random variables

In R we generate uniform random variables via runif
Additional functions include
rnorm(), rgamma(), rexp(), sample() etc.
In theory, we can generate any other random variable by transforming a uniform (or any other) random variable:

$$
u \sim \operatorname{Unif}(0,1), \quad x=f(u)
$$

## Generating random variables

In R we generate uniform random variables via runif
Additional functions include
rnorm(), rgamma(), rexp(), sample() etc.
In theory, we can generate any other random variable by
transforming a uniform (or any other) random variable:

$$
u \sim \operatorname{Unif}(0,1), \quad x=f(u)
$$

In practice, finding this $f$ is too hard. Need other approaches.
There is a whole subfield of statistics addressing this.

## Examples of Monte Carlo sampling


$x, y$ are a pair of dice. What is $p(x, y)$ ?

## Examples of Monte Carlo sampling


$x, y$ are a pair of dice. What is $p(x, y)$ ?

What is $\mathbb{E}[\min (x, y)]=\sum_{i=1}^{6} \sum_{j=1}^{6} \min (x, y) p(x, y)$

## Examples of Monte Carlo sampling

$x, y$ are a pair of dice. What is $p(x, y)$ ?

What is $\mathbb{E}[\min (x, y)]=\sum_{i=1}^{6} \sum_{j=1}^{6} \min (x, y) p(x, y)$
Don't really need Monte Carlo here (but what if we had a 100 dice?), but let's try it anyway. How?

## Examples of Monte Carlo sampling

## $x, y$ are a pair of dice. What is $p(x, y)$ ?

What is $\mathbb{E}[\min (x, y)]=\sum_{i=1}^{6} \sum_{j=1}^{6} \min (x, y) p(x, y)$
Don't really need Monte Carlo here (but what if we had a 100 dice?), but let's try it anyway. How?

Roll a pair of dice $N$ times. Call the ith outcome $\left(x_{i}, y_{i}\right)$. Then

$$
\mathbb{E}[\min (x, y)] \approx \frac{1}{N} \sum_{i=1}^{N} \min \left(x_{i}, y_{i}\right)
$$

## A (bad) way of estimating the area of a circle



> Let $C$ be the unit disc, i.e. all points $(x, y)$ with $x^{2}+y^{2} \leq 1$

$$
\text { Its area is } \begin{aligned}
A(C) & =\iint_{x, y \in C} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \delta_{C}((x, y)) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Here $\delta_{C}((x, y))=1$ if $x^{2}+y^{2} \leq 1$, else it equals 0

## A (BAD) WAY OF ESTIMATING THE AREA OF A CIRCLE



> Let $C$ be the unit disc, i.e. all points $(x, y)$ with $x^{2}+y^{2} \leq 1$

$$
\text { Its area is } \begin{aligned}
A(C) & =\iint_{x, y \in C} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \delta_{C}((x, y)) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Here $\delta_{C}((x, y))=1$ if $x^{2}+y^{2} \leq 1$, else it equals 0
How might we try to approximate this using Monte Carlo?

- What is the $f$ and $p$ ?


## A (BAD) WAY OF ESTIMATING THE AREA OF A CIRCLE

One way: choose some probability distribution $p(x, y)$
(e.g. both $x$ and $y$ are Gaussian distributed)

Then:

$$
\begin{aligned}
A(C) & =\int_{0}^{\infty} \int_{0}^{\infty} \delta_{C}((x, y)) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{\delta_{C}((x, y))}{p(x, y)} p(x, y) \mathrm{d} x \mathrm{~d} y \\
& \left.\approx \frac{1}{N} \sum_{i=1}^{N} \frac{\delta_{C}\left(\left(x_{i}, y_{i}\right)\right)}{p\left(x_{i}, y_{i}\right)} \quad \text { (Monte Carlo, with }\left(x_{i}, y_{i}\right) \sim p\right)
\end{aligned}
$$

## A (BAD) WAY OF ESTIMATING THE AREA OF A CIRCLE

One way: choose some probability distribution $p(x, y)$
(e.g. both $x$ and $y$ are Gaussian distributed)

Then:

$$
\begin{aligned}
A(C) & =\int_{0}^{\infty} \int_{0}^{\infty} \delta_{C}((x, y)) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{\delta_{C}((x, y))}{p(x, y)} p(x, y) \mathrm{d} x \mathrm{~d} y \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\delta_{C}\left(\left(x_{i}, y_{i}\right)\right)}{p\left(x_{i}, y_{i}\right)} \quad\left(\text { Monte Carlo, with }\left(x_{i}, y_{i}\right) \sim p\right)
\end{aligned}
$$

In words, sample $N$ points $\left(x_{i}, y_{i}\right)$ from some distribution $p$, and plug them into the last equation above

## A (bad) way of estimating the area of a circle

```
N <- 1000 # Number of Monte Carlo simulations
x <- rnorm(N); y <- rnorm(N) # Sample N Gaussian pairs (x,y)
px <- dnorm(x); py <- dnorm(y)
pp <- px * py # Calculate their probabiliy
dd <- sqrt( (x^2+y^2)
mc_est <- 1/N * sum(1/pp[dd<1]) # Monte Carlo estimate
```


## RARE EVENT SIMULATION:



Let $X=\left(x_{1}, \ldots, x_{100}\right)$ be a hundred dice. What is $p\left(\sum_{d=1}^{100} x_{d} \geq 450\right)$ ?

## RaRE EVENT SIMULATION:



Let $X=\left(x_{1}, \ldots, x_{100}\right)$ be a hundred dice.
What is $p(\operatorname{Sum}(X) \geq 450)$ ?
(where $\operatorname{Sum}(X)=\sum_{d=1}^{100} x_{d}$ )

## RaRe event simulation:



Let $X=\left(x_{1}, \ldots, x_{100}\right)$ be a hundred dice. What is $p(\operatorname{Sum}(X) \geq 450)$ ?
(where $\operatorname{Sum}(X)=\sum_{d=1}^{100} x_{d}$ )

$$
\begin{aligned}
p(\operatorname{Sum}(X) \geq 450) & =\sum \delta(\operatorname{Sum}(X) \geq 450) p(X) \\
& =\mathbb{E}_{p}[\delta(\operatorname{Sum}(X) \geq 450)]
\end{aligned}
$$

- $\delta(\cdot)$ is the indicator function
- $\delta($ condition $)=1$ if condition is true, else 0 .


## Naive Monte Carlo sampling

- Propose from $p(x)$
- Calculate $\frac{1}{N} \sum_{i=1}^{N} \delta\left(\operatorname{Sum}\left(X_{i}\right)\right)$


## Naive Monte Carlo sampling

- Propose from $p(x)$
- Calculate $\frac{1}{N} \sum_{i=1}^{N} \delta\left(\operatorname{Sum}\left(X_{i}\right)\right)$

Most $\delta\left(\operatorname{Sum}\left(X_{i}\right)\right)$ terms will be 0
High variance

## IMPORTANCE SAMPLING

Importance sampling: assigns importance weights to samples.

## IMPORTANCE SAMPLING

Importance sampling: assigns importance weights to samples.
Scheme:

- Draw a proposal $x_{i}$ from $q(\cdot)$
- Assign it a weight $w_{i}=p\left(x_{i}\right) / q\left(x_{i}\right)$


## IMPORTANCE SAMPLING

Importance sampling: assigns importance weights to samples.
Scheme:

- Draw a proposal $x_{i}$ from $q(\cdot)$
- Assign it a weight $w_{i}=p\left(x_{i}\right) / q\left(x_{i}\right)$

$$
\mu=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i=1}^{N} w_{i} f\left(x_{i}\right):=\mu_{i m p}
$$

## IMPORTANCE SAMPLING

Importance sampling: assigns importance weights to samples.
Scheme:

- Draw a proposal $x_{i}$ from $q(\cdot)$
- Assign it a weight $w_{i}=p\left(x_{i}\right) / q\left(x_{i}\right)$

$$
\begin{gathered}
\mu=\int_{\mathcal{X}} f(x) p(x) \mathrm{d} x \approx \frac{1}{N} \sum_{i=1}^{N} w_{i} f\left(x_{i}\right):=\mu_{i m p} \\
\mathbb{E}\left[\mu_{i m p}\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[w_{i} f\left(x_{i}\right)\right]=\int_{\mathcal{X}} \frac{p(x)}{q(x)} f(x) q(x) \mathrm{d} x
\end{gathered}
$$

## Importance Sampling (contd)

When does this make sense?
Sometimes it's easier to simulate from $q(x)$ than $p(x)$

## Importance Sampling (contd)

When does this make sense?
Sometimes it's easier to simulate from $q(x)$ than $p(x)$
Sometimes it's better to simulate from $q(x)$ than $p(x)$ !
To reduce variance. E.g. rare event simulation.

## IMPORTANCE SAMPLING

For 100 dice, what is $p($ Sum > 450)? A better choice might be to bias the dice.
E.g. $\quad q\left(x_{i}=v\right) \propto v \quad($ for $v \in\{1, \ldots 6\})$

## IMPORTANCE SAMPLING

For 100 dice, what is $p($ Sum > 450)? A better choice might be to bias the dice.
E.g. $\quad q\left(x_{i}=v\right) \propto v \quad($ for $v \in\{1, \ldots 6\})$

- Propose from $q(x)$
- Calculate weights $w\left(X_{i}\right)=p\left(X_{i}\right) / q\left(X_{i}\right)$
- Calculate $\frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) \delta\left(\operatorname{Sum}\left(X_{i}\right)\right)$


## IMPORTANCE SAMPLING

For 100 dice, what is $p($ Sum > 450)? A better choice might be to bias the dice.
E.g. $\quad q\left(x_{i}=v\right) \propto v \quad($ for $v \in\{1, \ldots 6\})$

- Propose from $q(x)$
- Calculate weights $w\left(X_{i}\right)=p\left(X_{i}\right) / q\left(X_{i}\right)$
- Calculate $\frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) \delta\left(\operatorname{Sum}\left(X_{i}\right)\right)$

Gives a better estimate of $p(\operatorname{Sum}(X) \geq 500)=\sum \delta(\operatorname{Sum}(X) \geq 500) p(X)$

