LECTURE 17: OVERVIEW OF OPTIMIZATION STAT 598z: Introduction to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University
March 29, 2018

GLOBAL AND LOCAL MINIMUM

Find minimum of some function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$.
(maximization is just minimizing $-f$).

No global information (e.g. only function values, derivatives).

GLOBAL AND LOCAL MINIMUM

Find minimum of some function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$.
(maximization is just minimizing $-f$).

No global information (e.g. only function values, derivatives).

Finding a global minimum is hard!
We'll settle for a local minimum (maybe with multiple restarts).

Estimating MLE

Consider a set of observations $X=\left(x_{1}, \cdots, x_{N}\right)$.
Assume $x_{i} \sim p\left(x_{i} \mid \theta\right)$
Maximum likelihood:

$$
\theta_{\text {MLE }}=\operatorname{argmax} p(X \mid \theta)=\operatorname{argmax} \prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)
$$

More convenient to maximize the log-likelihood:

$$
\theta_{M L E}=\operatorname{argmax} \log p(X \mid \theta)=\operatorname{argmax} \sum_{i=1}^{N} \log p\left(x_{i} \mid \theta\right)
$$

FIRST-ORDER CONDITIONS

The gradient $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{D}}\right]^{\top}$

FIRST-ORDER CONDITIONS

The gradient $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{D}}\right]^{\top}$

An infinitesimal step along $d \mathbf{x}=\left[d x_{1}, \cdots, d x_{N}\right]$ gives a change

$$
d f=\nabla f \cdot d \mathbf{x}
$$

FIRST-ORDER CONDITIONS

The gradient $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{D}}\right]^{\top}$

An infinitesimal step along $d \mathbf{x}=\left[d x_{1}, \cdots, d x_{N}\right]$ gives a change

$$
d f=\nabla f \cdot d \mathbf{x}
$$

$\nabla f:$ Direction of steepest ascent ($-\nabla f$ is steepest descent).

FIRST-ORDER CONDITIONS

The gradient $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{D}}\right]^{\top}$

An infinitesimal step along $d \mathbf{x}=\left[d x_{1}, \cdots, d x_{N}\right]$ gives a change

$$
d f=\nabla f \cdot d \mathbf{x}
$$

$\nabla f:$ Direction of steepest ascent ($-\nabla f$ is steepest descent).

At a local optimum $\nabla f=0$.

FIRST-ORDER CONDITIONS

The gradient $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{D}}\right]^{\top}$

An infinitesimal step along $d \mathbf{x}=\left[d x_{1}, \cdots, d x_{N}\right]$ gives a change

$$
d f=\nabla f \cdot d \mathrm{x}
$$

$\nabla f:$ Direction of steepest ascent ($-\nabla f$ is steepest descent).

At a local optimum $\nabla f=0$.
At a local minimum, Hessian $\nabla^{2} f \succeq 0$ (positive semidefinite)

$$
\left[\nabla^{2} f\right]_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

One-dimensional minimization

Find a bracket (a, b) with a third point $c \in(a, b)$, with

$$
f(a)>f(c)<f(b)
$$

Implies a local minimum lies in (a, b).

ONE-DIMENSIONAL MINIMIZATION

To find an initial bracketing:

- Pick two points l and r,l<r

ONE-DIMENSIONAL MINIMIZATION

To find an initial bracketing:

- Pick two points l and $r, l<r$
- If $f(l)<f(r), c=l$ and $b=r$, else $a=l$ and $c=r$.

ONE-DIMENSIONAL MINIMIZATION

To find an initial bracketing:

- Pick two points l and $r, l<r$
- If $f(l)<f(r), c=l$ and $b=r$, else $a=l$ and $c=r$.
- In the first case, choose $a<c$, and keep decreasing till $f(a)>f(c)$ (similarly with b for second case)

One-dimensional minimization

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, c) or (c, b).

One-dimensional minimization

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, c) or (c, b).
- Suppose it is (c, b). Then aither (a, c, d) and (c, d, b) forms a bracket.

One-dimensional minimization

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, c) or (c, b).
- Suppose it is (c, b). Then aither (a, c, d) and (c, d, b) forms a bracket.
- Choose and repeat

ONE-DIMENSIONAL MINIMIZATION

Having done this, successively refine (a, c) or (c, b).

- Pick d in the longer interval (a, c) or (c, b).
- Suppose it is (c, b). Then aither (a, c, d) and (c, d, b) forms a bracket.
- Choose and repeat

Doesn't extend easily to higher dimensions.

The simplex algorithm (Nelder \& Mead)

Find minimum of some function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$.

Requires only function evaluations.
Very general purpose, but not very efficient.

The simplex algorithm (Nelder \& Mead)

Find minimum of some function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$.

Requires only function evaluations.
Very general purpose, but not very efficient.

A 'simplex' in N-dimensions is the convex-hull of $N+1$ points.
In 1-d: a line segment, 2-d: a triangle, 3-d: a tetrahedron etc.

The simplex algorithm (Nelder \& Mead)

Find minimum of some function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$.

Requires only function evaluations.
Very general purpose, but not very efficient.

A 'simplex' in N-dimensions is the convex-hull of $N+1$ points. In 1-d: a line segment, 2-d: a triangle, 3-d: a tetrahedron etc.

In 1-d we could bracket the minimum.
In higher dims, we must use other heuristics.

The simplex algorithm (Nelder \& Mead)

Start with an initial simplex.

Typically, pick an initial point P_{0}.
Also set ($\mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{N}+1}$) with $\mathrm{P}_{i}=\mathrm{P}_{0}+\lambda_{i} \mathrm{e}_{j}$.
Here \mathbf{e}_{i} is the i th coordinate direction, and λ_{i} is the length-scale in that direction.

The simplex algorithm (Nelder \& Mead)

Start with an initial simplex.

Typically, pick an initial point P_{0}.
Also set ($\mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{N}+1}$) with $\mathrm{P}_{i}=\mathrm{P}_{0}+\lambda_{i} \mathrm{e}_{i}$.
Here \mathbf{e}_{i} is the i th coordinate direction, and λ_{i} is the length-scale in that direction.

Assume $f\left(\mathrm{P}_{0}\right) \leq f\left(\mathrm{P}_{1}\right) \leq \cdots \leq f\left(\mathrm{P}_{N+1}\right)$.

The simplex algorithm (Nelder \& Mead)

Start with an initial simplex.

Typically, pick an initial point P_{0}.
Also set ($\mathrm{P}_{1}, \cdots, \mathrm{P}_{\mathrm{N}+1}$) with $\mathrm{P}_{i}=\mathrm{P}_{0}+\lambda_{i} \mathrm{e}_{i}$.
Here \mathbf{e}_{i} is the i th coordinate direction, and λ_{i} is the length-scale in that direction.

Assume $f\left(\mathrm{P}_{0}\right) \leq f\left(\mathrm{P}_{1}\right) \leq \cdots \leq f\left(\mathrm{P}_{N+1}\right)$.

At each step, try to improve the worst point $\mathrm{P}_{\mathrm{N}+1}$ using one of a sequence of moves.

SIMPLEX ALGORITHM

Get initial simplex

SIMPLEX ALGORITHM

Find worst point, and find centroid of the remaining.

SIMPLEX ALGORITHM

Reflect worst point.
If this is neither worst nor best point, go back to first step.

SIMPLEX ALGORITHM

If this is the best point, extend.

SIMPLEX ALGORITHM

and go back to step one.

SIMPLEX ALGORITHM

If this is the worst point, contract.

SIMPLEX ALGORITHM

If this is the worst point, contract.

SIMPLEX ALGORITHM

Else shrink all points except the best.

GRADIENT DESCENT

Let $x_{\text {old }}$ be our current value
Update $x_{\text {new }}$ as $\quad x_{\text {new }}=x_{\text {old }}-\left.\eta \frac{\mathrm{df}}{\mathrm{dx}}\right|_{x_{\text {old }}}$
The steeper the slope, the bigger the move

GRADIENT DESCENT

Let $x_{\text {old }}$ be our current value
Update $x_{\text {new }}$ as $\quad x_{\text {new }}=x_{\text {old }}-\left.\eta \frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x_{\text {old }}}$
The steeper the slope, the bigger the move
η : sometimes called the 'learning rate'
(terminology from the neural network literature)

GRADIENT DESCENT

Let $x_{\text {old }}$ be our current value
Update $x_{\text {new }}$ as $\quad x_{\text {new }}=x_{\text {old }}-\left.\eta \frac{\mathrm{d} f}{\mathrm{dx}}\right|_{x_{\text {old }}}$
The steeper the slope, the bigger the move
η : sometimes called the 'learning rate'
(terminology from the neural network literature)
Choosing η is a dark art:

GRADIENT DESCENT

Let $x_{\text {old }}$ be our current value
Update $x_{\text {new }}$ as $\quad x_{\text {new }}=x_{\text {old }}-\left.\eta \frac{\mathrm{df}}{\mathrm{dx}}\right|_{x_{\text {old }}}$
The steeper the slope, the bigger the move
η : sometimes called the 'learning rate'
(terminology from the neural network literature)
Choosing η is a dark art:

Better methods adapt step-size according to the curvature of f.

Gradient descent in higher-dimensions

Gradient descent applies to higher dimensions too:

$$
x_{\text {new }}=x_{\text {old }}-\left.\eta \nabla f\right|_{x_{\text {old }}}
$$

Steepest descent

An any iteration, set p to the direction of steepest descent.

$$
\mathrm{p}=\nabla f\left(x_{i}\right)
$$

Minimize along that direction:

$$
\lambda_{\min }=\operatorname{argmin}_{\lambda} f\left(\mathbf{x}_{i}+\lambda \mathbf{p}\right)
$$

Set $\mathbf{x}_{i+1}=\mathbf{x}_{i}+\lambda_{\text {min }} \mathbf{p}$.

Steepest descent

Can get trapped in long narrow valleys, where successive steps cancel each other.

Steepest descent

Can get trapped in long narrow valleys, where successive steps cancel each other.

CONJUGATE DESCENT

Conjugate gradient avoids moves along the same direction.
For a D-dim quadratic loss reaches minimum in D steps
Common default method

NEWTON'S METHOD

Uses the second derivative (curvature) to decide the step-size η.

At current point x_{i}, evaluate $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)$ and $f^{\prime \prime}\left(x_{i}\right)$.
Fit a parabola having these values and set x_{i+1} to its minimum.

NEWTON'S METHOD

Uses the second derivative (curvature) to decide the step-size η.

At current point x_{i}, evaluate $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)$ and $f^{\prime \prime}\left(x_{i}\right)$.
Fit a parabola having these values and set x_{i+1} to its minimum.
Easy to see that (show it!):

$$
x_{i+1}=x_{i}-f^{\prime}\left(x_{i}\right) / f^{\prime \prime}\left(x_{i}\right)
$$

NEWTON'S METHOD

Uses the second derivative (curvature) to decide the step-size η.

At current point x_{i}, evaluate $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)$ and $f^{\prime \prime}\left(x_{i}\right)$.
Fit a parabola having these values and set x_{i+1} to its minimum.
Easy to see that (show it!):

$$
x_{i+1}=x_{i}-f^{\prime}\left(x_{i}\right) / f^{\prime \prime}\left(x_{i}\right)
$$

If $f^{\prime \prime}$ is large, we're uncertain about f^{\prime}, so take a small step.

NEWTON'S METHOD IN HIGHER DIMENSIONS

Update rule:

$$
\mathbf{x}_{i+1}=\mathrm{x}_{i}-\left[\nabla^{2} f\left(\mathrm{x}_{i}\right)\right]^{-1} \nabla f\left(\mathrm{x}_{i}\right)
$$

NEWTON'S METHOD IN HIGHER DIMENSIONS

Update rule:

$$
\mathrm{x}_{i+1}=\mathrm{x}_{i}-\left[\nabla^{2} f\left(\mathrm{x}_{i}\right)\right]^{-1} \nabla f\left(\mathrm{x}_{i}\right)
$$

Need to calculate the Hessian $\nabla^{2} f: N^{2}$ elements.

Need to invert the Hessian: N^{3} operations.

NEWTON'S METHOD IN HIGHER DIMENSIONS

Update rule:

$$
\mathrm{x}_{i+1}=\mathrm{x}_{i}-\left[\nabla^{2} f\left(\mathrm{x}_{i}\right)\right]^{-1} \nabla f\left(\mathrm{x}_{i}\right)
$$

Need to calculate the Hessian $\nabla^{2} f: N^{2}$ elements.

Need to invert the Hessian: N^{3} operations.

Each iteration can be expensive.
Quasi-Newton methods try to alleviate this issue.

NEWTON'S METHOD IN HIGHER DIMENSIONS

Update rule:

$$
\mathrm{x}_{i+1}=\mathrm{x}_{i}-\left[\nabla^{2} f\left(\mathrm{x}_{i}\right)\right]^{-1} \nabla f\left(\mathrm{x}_{i}\right)
$$

Need to calculate the Hessian $\nabla^{2} f: N^{2}$ elements.

Need to invert the Hessian: N^{3} operations.

Each iteration can be expensive.
Quasi-Newton methods try to alleviate this issue.

We have to be wary about taking wild steps.

NEWTON'S DESCENT

Set \mathbf{p} to the minimum of the local quadratic approximation.

$$
\mathrm{p}=\left[\nabla^{2} f(\mathrm{x})\right]^{-1} \nabla f\left(x_{i}\right)
$$

Reaches minimum of quadratic loss in 1 step

QUASI-NEWTON METHODS

Newton's method: $\mathrm{p}=\left[\nabla^{2} f(\mathrm{x})\right]^{-1} \nabla f\left(\mathrm{x}_{\mathrm{i}}\right)$
Steepest's descept: $\mathbf{p}=/ \nabla f\left(\mathbf{x}_{\mathrm{i}}\right)$

QUASI-NEWTON METHODS

Newton's method: $\mathrm{p}=\left[\nabla^{2} f(\mathrm{x})\right]^{-1} \nabla f\left(\mathrm{x}_{\mathrm{i}}\right)$

Steepest's descept: $\mathbf{p}=/ \nabla f\left(\mathbf{x}_{\mathrm{i}}\right)$

Quasi-Newton methods use other matrices B:

$$
\mathrm{p}=\mathrm{B} \nabla f\left(x_{i}\right)
$$

QUASI-NEWTON METHODS

Newton's method: $\mathbf{p}=\left[\nabla^{2} f(\mathbf{x})\right]^{-1} \nabla f\left(\mathbf{x}_{i}\right)$
Steepest's descept: $\mathbf{p}=I \nabla f\left(\mathbf{x}_{\mathrm{i}}\right)$

Quasi-Newton methods use other matrices B :

$$
\mathrm{p}=\mathrm{B} \nabla f\left(x_{i}\right)
$$

Usually, B is allowed to vary from iteration to iteration, with

$$
\mathbf{B}_{i} \rightarrow\left[\nabla^{2} f(x)\right]^{-1}
$$

Get benefits of Newton's method, without $O\left(N^{3}\right)$ computations.
E.g. BFGS

NEWTON'S DESCENT

Set p to the minimum of the local quadratic approximation.

$$
\mathrm{p}=\left[\nabla^{2} f(\mathrm{x})\right]^{-1} \nabla f\left(x_{i}\right)
$$

Finds quadratic minimum in 1 iteration.

Co-ordinate descent

Saw this last lecture
Simple, clean and inexpensive.
Often the 1-d problems can be solved exactly.
Convergence can be slow.
Exception: axis aligned ellipses need just D steps.

OPTIMIZATION IN R

Use the optim function
Syntax:

```
optim(par, fn, gr = NULL, ...,
    method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
        'Brent'),
    lower = -Inf, upper = Inf,
    control = list(), hessian = FALSE)
```

fn: function to be optimized
gr: gradient function (calculate numerically if NULL)
par: initial value of parameter to be optimized (should be first argument of fn)

