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Bias-variance and regularization

Problem: Given training data (X, y) ≡ {xi, yi},
minimize L(w) = 1

2(Y− XTw)2

To reduce variance (i.e. sensitivity to small changes in training
data) , add a penalty Ω(w):

ŵ = argmin L(w) + λΩ(w)

LASSO:

• Ω(w) = ∥w∥1 (∥w∥1 = |w1|+ |w2|+ · · ·+ |wp|)
• Shrinkage and selection
(w is sparse with some components equal to 0)

• No simple closed-form solution
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Credit data set (average credit card debt)
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Regularization as constrained optimization

argmin(y− X⊤w)2 + λ∥w∥22 is equivalent to

argmin(y− X⊤w)2 s.t. ∥w∥22 ≤ γ

(Note: γ will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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Lasso

argmin(y− X⊤w)2 s.t. ∥w∥1 ≤ γ

∥w∥1 =
∑p

j=1 |wj| is the ℓ1-norm.

Lasso: least absolute shrinkage and selection operator.

ŵ = argmin
n∑
i=1

(yi − x⊤i w)2 + λ∥w∥1

• Penalizes small wj more than ridge regression.
• Tolerates larger wj more than ridge regression.

Result:

• ŵLASSO has some components exactly equal to zero.
• Performs feature selection.
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• ŵLASSO has some components exactly equal to zero.
• Performs feature selection.

4/16



Lasso

argmin(y− X⊤w)2 s.t. ∥w∥1 ≤ γ

∥w∥1 =
∑p

j=1 |wj| is the ℓ1-norm.

Lasso: least absolute shrinkage and selection operator.
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The 1-D case
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In the 1-d case, (x, y) ≡ {xi, yi}

Least-squares solution: ŵols = x⊤y
x⊤x

Ridge regression solution: ŵridge = x⊤x
x⊤x+λ

LASSO solution?
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Optimization in R

Use the optim function

Syntax:
optim(par, fn, gr = NULL, ...,

method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
'Brent'),

lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

fn: function to be optimized

gr: gradient function (calculate numerically if NULL)

par: initial value of parameter to be optimized (should be first
argument of fn)
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LASSO in 1-d

ŵ = argmin L(w) = argmin 1
2
∑n

i=1(yi − wxi)2 + λ|w|

At the minimum,

dL
dw = 0

−
n∑
i=1

(yi − wxi)xi + λ
d|w|
dw = 0

−
n∑
i=1

yixi + w
n∑
i=1

x2i + λ
d|w|
dw = 0

w =

∑n
i=1 yixi − λd|w|

dw∑n
i=1 x2i
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Subgradients

w =
∑n

i=1 yixi−λ
d|w|
dw∑n

i=1 x2i
=

y⊤x−λ
d|w|
dw

x⊤x : What is d|w|
dw ?
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w

w > 0 ↔d|w|
dw = 1

w < 0 ↔d|w|
dw = −1

w = 0 ↔d|w|
dw ∈ (−1, 1)

w > 0 ↔ w =
y⊤x− λ

x⊤x

w < 0 ↔ w =
y⊤x+ λ

x⊤x
w = 0 ↔ w = otherwise
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The 1-D case
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LASSO

First calculate: ŵols = y⊤x
x⊤x

Soft threshold: ŵLASSO = sign(ŵols)(|ŵols| − λ
x⊤x)+

(x)+ = x if x > 0, else 0, and
sign(x) = +1 if x > 0 else − 1
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Lasso in higher (p) dimensions

Find w by coordinate descent

L(w) =
n∑
i=1

(yi − w⊤xi)2 + λ∥w∥1 (1)

=
n∑
i=1

(yi −
p∑
j=1

wjxij)2 + λ

p∑
j=1

|wj| (2)

=
n∑
i=1

(rid − wdxid)2 + λ|wd|+ C

(3)

Here rid is the residual of obs. i:

rid = yi −
∑
j ̸=d

wjxij

Eq(3) is just 1d LASSO! Can solve for wd by soft-thresholding.

Repeat
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Co-ordinate descent

Initialize w to some arbitrary value

For dimension d, calculate the residual rd = (r1d, · · · , rnd),
rid = yi −

∑
j ̸=d wjxij for each observation i

Set ŵols = (xd)⊤rd
(xd)⊤xd

where xd is the dth column of X and we have:

ŵd = sign(ŵols)(|ŵols| −
λ

(xd)⊤xd
)+

Repeat across dimensions d till convergence.

Does this work?
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Set ŵols = (xd)⊤rd
(xd)⊤xd

where xd is the dth column of X and we have:
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Does co-ordinate descent work?

For convex differentiable functions: yes

Convex function f: local optimum is a global minimum.

Local optimum for a differentiable function:

∇f(w) =
[
∂f
∂w1

, · · · , ∂f
∂wp

]
= 0

At a stationary point of coordinate descent, the RHS is true.

12/16



Does co-ordinate descent work?

For convex non-differentiable functions: in general, no!
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Does co-ordinate descent work?

For functions of the form: f(w) = g(w) +
∑p

i=1 hi(wi), where f is
convex and differentiable, hi’s are convex but not

differentiable: yes
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Co-ordinate descent

Competitive with state-of-the-art optimization for LASSO

Since objective function is convex, any initialization works
(though some are better)

Obtains the solution ŵ for any λ

Can repeat for different λ’s (though some ways are better).
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Pathwise co-ordinate descent

We want ŵ’s for a set of λ’s

Pick a smallest and largest λ (latter corresponding to ŵ = 0)
Divide into equidistant grid points (typ. on logscale)

Start with the largest λ (solution = 0).

Move to the next, using previous solution as initialization.

Converges after a few sweeps

Repeat

This kind of a guided search is often faster, even if we just want
one λ.
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