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BIAS-VARIANCE AND REGULARIZATION

Problem: Given training data (X,y) = {x;,V;},
minimize £(w) = J(Y — X"w)?
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minimize £(w) = J(Y — X"w)?

To reduce variance (i.e. sensitivity to small changes in training
data), add a penalty Q(w):

W =argmin £(w) + AQ(w)
Ridge regression/L, regression:

- Q(w) = [|w|}3
- W= (X"X4+ X)Xy (Shrinkage)
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BIAS-VARIANCE AND REGULARIZATION

Problem: Given training data (X,y) = {X;,V;},
minimize £(w) = J(Y — X'w)?

To reduce variance (i.e. sensitivity to small changes in training
data), add a penalty Q(w):

W = argmin L(w) + AQ(w)
LASSO:

- Q(w) = [lwlly - (Iwllr = wal + o] + - - + [wp))
- Shrinkage and selection
(w is sparse with some components equal to 0)

- No simple closed-form solution
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — XTw)? + A|lw||3 is equivalent to
argmin(y — XTw)?  s.t. |w|f2 < v

(Note: v will depend on data)

306



REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — XTw)? + A|lw||3 is equivalent to
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — XTw)? + A|lw||3 is equivalent to
argmin(y — XTw)?  s.t. |w|f2 < v
(Note: v will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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argmin(y —X"w)? s.t. |wll; <~

wlly = P lw;| is the ¢;-norm.
Wil =32 |w
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LASSO

argmin(y — X'w)? s.t. [[w; <y

lwljy = ZJL ;| is the £1-norm.

Lasso: least absolute shrinkage and selection operator.

—afgmmZ = X w)? -+ Allwl)y
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LASSO

argmin(y — XTw)? s.t. |wll; <~

lwljy = ZJL ;| is the £1-norm.

Lasso: least absolute shrinkage and selection operator.

_argmmz =% w)? 4 Al|wl|

- Penalizes small w; more than ridge regression.
- Tolerates larger w; more than ridge regression.
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LASSO

argmin(y — XTw)? s.t. |wll; <~

lwljy = ZJL ;| is the £1-norm.

Lasso: least absolute shrinkage and selection operator.

_argmmz =% w)? 4 Al|wl|

- Penalizes small w; more than ridge regression.
- Tolerates larger w; more than ridge regression.

Result:

* Wiasso has some components exactly equal to zero.
- Performs feature selection.
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THE 1-D CASE
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In the 1-d case, (x,y) = {x;, i}

Least-squares solution: Wys = -
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THE 1-D CASE
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In the 1-d case, (x,y) = {x;, i}

e, Xy
Least-squares solution: Wys = J+y
: : A T
Ridge regression solution: Wrigge = ;F5ix
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THE 1-D CASE
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In the 1-d case, (x,y) = {x;, i}

T

Least-squares solution: Wois = 37~
0 o o A T
Ridge regression solution: Wigge = %

LASSO solution?
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OPTIMIZATION IN R

Use the optim function

Syntax:

optim(par, fn, gr = NULL, ...,
method = c('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN',
'Brent'),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

fn: function to be optimized
gr: gradient function (calculate numerically if NULL)

par: initial value of parameter to be optimized (should be first
argument of fn)
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W = argmin £(w) = argmin 3 Y7 (vi — wx;)? + A|w|
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W = argmin £(w) = argmin 3 Y7 (vi — wx;)? + A|w|
At the minimum,

%
dw
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LASSO IN 1-D

W = argmin £(w) = argmin 3 37, (i — wx;)? + A|w|
At the minimum,

dL

dw

djw]
- E i — WXj)X; + A =
2 (Vi P)Xi + KT 0

n
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LASSO IN 1-D

W = argmin £(w) = argmin 3 37, (i — wx;)? + A|w|
At the minimum,

%
dw

n
djw|
- i WX + A =0

=1

n n d‘W’
_z;y,-xi+vv§;x,2+)\dw —0
I= 1=
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LASSO IN 1-D

W = argmin £(w) = argmin 3 37, (i — wx;)? + A|w|
At the minimum,
dc
dw
. djw|
- i WX + A =0

=1

n n d‘W’
_z;y,-xi+WZX,2+)\dW —0
=

2\d
> ViXi — |W|
2171

W=
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THE 1-D CASE
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THE 1-D CASE
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent
n

L(w) = (i —wx)” + Al|wl; (1)
=1
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent

L(w) = (i —wx)* + Al|wl; (1)

p p
= Z(yl - Z WJ'X,'/')Z + )\Z ‘Wj’ (2)
] 1 j=1

i=1 j=
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent

L(w) = (i —wx)* + Al|wl;

n p

p
=3 =D _owxp) A |wl
=

=1 j=1
n

= (rig — WaXia)” + Alwgl + C
=1

Here riq is the residual of obs. I

lig =Yi — Z WiXij

j#d
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LASSO IN HIGHER (P) DIMENSIONS

Find w by coordinate descent

L(w) = (i —wx)* + Al|wl; (1)

n p

p
= Z(yl - Z WJ'X,'}')Z + )\Z ‘Wj’ (2)
j=1

=1 j=1
n

= (rig — WaXia)” + Alwgl + C (3)
=1

Here riq is the residual of obs. I
lig =Yi— Z WjXij
j#d
Eq(3) is just 1d LASSO! Can solve for wy by soft-thresholding.

Repeat 10716



CO-ORDINATE DESCENT

Initialize w to some arbitrary value

For dimension d, calculate the residual rg = (rg, -+, 'nd),
— >_j+q WjXi for each observation i

Set Wys = g ;’; ' where x4 is the dth column of X and we have:

. RN - A
Wy = sign(Wous )([Wous| — m)—i-
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CO-ORDINATE DESCENT

Initialize w to some arbitrary value

For dimension d, calculate the residual rg = (rg, -+, 'nd),
— >_j+q WjXi for each observation i

Set Wys = g j; ' where x4 is the dth column of X and we have:

. RN - A
Wy = sign(Wous )([Wous| — m)—i-

Repeat across dimensions d till convergence.

Does this work?
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DOES CO-ORDINATE DESCENT WORK?

For convex differentiable functions: yes
Convex function f: local optimum is a global minimum.

Local optimum for a differentiable function:

LA &

8W‘] ’ ’ aWp

vrw) = |
At a stationary point of coordinate descent, the RHS is true.
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DOES CO-ORDINATE DESCENT WORK?

For convex non-differentiable functions: in general, no!

1316



DOES CO-ORDINATE DESCENT WORK?

For functions of the form: f(w) = g(w) + ZL hi(w;), where fis
convex and differentiable, h;'s are convex but not
differentiable: yes
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Competitive with state-of-the-art optimization for LASSO
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CO-ORDINATE DESCENT
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Since objective function is convex, any initialization works
(though some are better)
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CO-ORDINATE DESCENT

Competitive with state-of-the-art optimization for LASSO

Since objective function is convex, any initialization works
(though some are better)

Obtains the solution W for any A

Can repeat for different A's (though some ways are better).
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We want w's for a set of \'s
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PATHWISE CO-ORDINATE DESCENT
We want w's for a set of \'s

Pick a smallest and largest X (latter corresponding to W = 0)
Divide into equidistant grid points (typ. on logscale)
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PATHWISE CO-ORDINATE DESCENT

We want w's for a set of \'s

Pick a smallest and largest X (latter corresponding to W = 0)
Divide into equidistant grid points (typ. on logscale)

Start with the largest A (solution = 0).

Move to the next, using previous solution as initialization.

Converges after a few sweeps
Repeat

This kind of a guided search is often faster, even if we just want
one \.
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