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Consider linear regression:
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In vector notation:

y=Xw+e, yeR,weR’ XeRPX"

W = arg min,, |ly — X w||? = arg min,, i, (v; — X w)?
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Problem: n
W = arg min,, [ly — XTw[” = arg min, > (v; — x/ w)’
i=1
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ORDINARY LEAST SQUARES

Problem: n
W = arg min,, [ly — XTw[” = arg min, > (v; — x/ w)’
i=1

Solution: - L
W= (XX")"'Xy (correlation in 1-d)

(Xx")

How to do this in R (without using 1m)?
- Do not invert with solve and multiply!

210



ORDINARY LEAST SQUARES

Problem: n
W = arg min,, [ly — XTw[” = arg min, > (v; — x/ w)’
=1

Solution: - L
W= (XX")""'Xy (correlation in 1-d)

(Xx")

How to do this in R (without using 1m)?
- Do not invert with solve and multiply!

- Directly solve (XXT)W = Xy
210



PREDICTION ERROR

W is an unbiased estimate of the true w
For a test vector x't we predict w T xst.

(Squared) prediction error: PE> = 1 S2F_(yfest — wTxtest)?
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W is an unbiased estimate of the true w

For a test vector x't we predict w T xst.

(Squared) prediction error: PE> = 1 S2F_(yfest — wTxtest)?
Can show:

- PEis has mean 0

- variance grows with number of features (p)
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PREDICTION ERROR

W is an unbiased estimate of the true w
For a test vector x't we predict w T xst.
(Squared) prediction error: PE> = 1 S2F_(yfest — wTxtest)?

Can show:

- PEis has mean 0

- variance grows with number of features (p)

What if p > n?

- XXT is singular
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p > n:

- Cannot invert XXT
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REGULARIZATION

p > n:

- Cannot invert XX

- We can invert if we add a small A to the diagonal

Wy = (XX" + X)Xy (/s the identity matrix)
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- Cannot invert XX
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- A= 0 recovers OLS
- Larger X\ causes larger bias
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REGULARIZATION

p > n:

- Cannot invert XX

- We can invert if we add a small A to the diagonal
Wy = (XX" +A)~Xy  (I'is the identity matrix)
Introducing A makes problem well-posed, but introduces bias

- A= 0 recovers OLS
- Larger X\ causes larger bias

c A =007
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REGULARIZATION

p > n:

- Cannot invert XX

- We can invert if we add a small A to the diagonal
Wy = (XX" +A)~Xy  (I'is the identity matrix)
Introducing A makes problem well-posed, but introduces bias

- A= 0 recovers OLS
- Larger X\ causes larger bias

- X = o00? No variance!
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REGULARIZATION

p > n:

- Cannot invert XX

- We can invert if we add a small A to the diagonal
Wy = (XX" +A)~Xy  (I'is the identity matrix)
Introducing A makes problem well-posed, but introduces bias

- X =0 recovers OLS

- Larger X causes larger bias
- X = o00? No variance!

A trades-off bias and variance

Maybe a nonzero X is actually good?
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RIDGE REGRESSION (A.K.A. TIKHONOV REGULARIZATION)

Recall W = (XXT)~"Xy solves W = arg min [ly — X w/?
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RIDGE REGRESSION (A.K.A. TIKHONOV REGULARIZATION)

Recall W = (XXT)~"Xy solves W = arg min [ly — X w/?

Wy = (XXT + AI)~"Xy solves

n
Wy = argminLy(w) := argmin > (y; — X w)” + w3
=1

p

[w|3 = >F_, w? is the squared ¢,-norm

A|w||; is the shrinkage penalty.
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RIDGE REGRESSION (A.K.A. TIKHONOV REGULARIZATION)

Recall W = (XXT)~"Xy solves W = arg min [ly — X w/?

Wy = (XXT + AI)~"Xy solves

Wy, = argminLy(w) := argmmz =% w)? 4+ w3

w3 = >°F_, w? is the squared ,-norm
A|w||; is the shrinkage penalty.
Favours w's with smaller components

A trades of small training error with ‘simple’ solutions
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RIDGE REGRESSION (A.K.A. TIKHONOV REGULARIZATION)

Recall W = (XXT)~"Xy solves W = arg min [ly — X w/?

Wy = (XXT + AI)~"Xy solves

Wy, = argminLy(w) := argmmz =% w)? 4+ w3

w3 = >°F_, w? is the squared ,-norm

A|w||; is the shrinkage penalty.

Favours w's with smaller components

A trades of small training error with ‘simple’ solutions

¢, /ridge/Tikhonov regularization
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RIDGE REGRESSION (SOLUTION)

Simple modification of the least-squares solution:

Wy = (XTX+ Alp) "Xy
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RIDGE REGRESSION (SOLUTION)

Simple modification of the least-squares solution:

Wy = (XTX+ Alp) "Xy

In the 1-dimensional case,

Wy = (x"x 4+ Alp)'xTy
x'x x'y
(XTx + Alp) xTx

= Ccw (c<)

Shrinks least-squares solution.
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RIDGE REGRESSION

Credit data set (average credit card debt)
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Cross-validaton:
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Cross-validaton:

- Pick a set of \'s
- For kth fold of cross-validation:
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HoOw DO WE CHOOSE \?

Cross-validaton:

- Pick a set of \'s
- For kth fold of cross-validation:
- For each X:

- Solve the regularized least squares problem on training data.
- Evaluate estimated w on held-out data (call this PEj ).
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HoOw DO WE CHOOSE \?

Cross-validaton:

- Pick a set of \'s

- For kth fold of cross-validation:
- For each X:

- Solve the regularized least squares problem on training data.

- Evaluate estimated w on held-out data (call this PEj ).

- Pick A = argmin mean(PE,)
or (argmin (mean(PEy) + stderr(PEy)))
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HOw DO WE CHOOSE \?

Cross-validaton:

- Pick a set of \'s
- For kth fold of cross-validation:
- For each X:

- Solve the regularized least squares problem on training data.
- Evaluate estimated w on held-out data (call this PEj ).

- Pick A = argmin mean(PE,)
or (argmin (mean(PEy) + stderr(PEy)))
- Having chosen \ solve regularized least square on all data
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DOES THIS WORK?
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DOES THIS WORK?

Mean Squared Error

Ridge regression improves performance by reducing variance
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DOES THIS WORK?

Mean Squared Error

Ridge regression improves performance by reducing variance

- does not perform feature selection
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- just shrinks components of w towards 0

For the former: Lasso
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — XTw)? + A|lw||3 is equivalent to
argmin(y — XTw)?  s.t. |w|f2 < v

(Note: v will depend on data)
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — XTw)? + A|lw||3 is equivalent to
argmin(y — XTw)?  s.t. |w|f2 < v
(Note: v will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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REGULARIZATION AS CONSTRAINED OPTIMIZATION

argmin(y — XTw)? + A|lw||3 is equivalent to
argmin(y — XTw)?  s.t. |w|f2 < v
(Note: v will depend on data)

First problem: regularized optimization
Second problem: constrained optimization
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