LECTURE 14: l_{2} REGULARIZATION
 STAT 598z: Introduction to computing for statistics

Vinayak Rao
Department of Statistics, Purdue University

February 28, 2018

ORDINARY LEAST SQUARES

Consider linear regression:

$$
y=\mathbf{x}^{\top} \mathbf{w}+\epsilon
$$

ORDINARY LEAST SQUARES

Consider linear regression:

$$
y=\mathbf{x}^{\top} \mathbf{w}+\epsilon
$$

In vector notation:

$$
\mathbf{y}=\mathbf{X}^{T} \mathbf{w}+\epsilon, \quad \mathrm{y} \in \Re^{n}, \mathbf{w} \in \Re^{p}, \mathrm{X} \in \Re^{p \times n}
$$

ORDINARY LEAST SQUARES

Consider linear regression:

$$
y=\mathbf{x}^{\top} \mathbf{w}+\epsilon
$$

In vector notation:

$$
\mathbf{y}=\mathbf{X}^{\top} \mathbf{w}+\epsilon, \quad \mathbf{y} \in \Re^{n}, \mathbf{w} \in \Re^{p}, \mathbf{X} \in \Re^{p \times n}
$$

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{w}\right\|^{2}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}
$$

Ordinary least squares

Problem:

$$
\hat{w}=\arg \min _{w}\left\|y-X^{\top} w\right\|^{2}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} w\right)^{2}
$$

Ordinary least squares

Problem:

$$
\hat{\mathbf{w}}=\arg \min _{w}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{w}\right\|^{2}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}
$$

Solution:

$$
\hat{w}=\left(X X^{\top}\right)^{-1} X y \quad(\text { correlation in } 1-d)
$$

Ordinary least squares

Problem:

$$
\hat{\mathbf{w}}=\arg \min _{w}\left\|y-X^{\top} w\right\|^{2}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} w\right)^{2}
$$

Solution:

$$
\hat{\mathrm{w}}=\left(\mathrm{XX}^{\top}\right)^{-1} \mathrm{Xy} \quad(\text { correlation in } 1-\mathrm{d})
$$

How to do this in R (without using 1 m)?

- Do not invert with solve and multiply!

Ordinary least squares

Problem:

$$
\hat{\mathbf{w}}=\arg \min _{w}\left\|\mathbf{y}-X^{\top} \mathbf{w}\right\|^{2}=\arg \min _{w} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} w\right)^{2}
$$

Solution:

$$
\hat{\mathrm{w}}=\left(\mathrm{XX}^{\top}\right)^{-1} \mathrm{Xy} \quad(\text { correlation in } 1-\mathrm{d})
$$

How to do this in R (without using 1 m)?

- Do not invert with solve and multiply!
- Directly solve $\left(X X^{\top}\right) \hat{w}=X y$

PREDICTION ERROR

\hat{w} is an unbiased estimate of the true w
For a test vector $\mathbf{x}^{\text {test }}$ we predict $\mathbf{w}^{\top} \mathbf{x}^{\text {test }}$.
(Squared) prediction error: $P E^{2}=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}^{\text {test }}-\mathbf{w}^{\top} \boldsymbol{x}_{i}^{\text {test }}\right)^{2}$

Prediction error

\hat{w} is an unbiased estimate of the true w
For a test vector $\mathbf{x}^{\text {test }}$ we predict $\mathbf{w}^{\top} \mathbf{x}^{\text {test }}$.
(Squared) prediction error: $P E^{2}=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}^{\text {test }}-\mathbf{w}^{\top} \mathbf{x}_{i}^{\text {test }}\right)^{2}$
Can show:

- PE is has mean 0
- variance grows with number of features (p)

Prediction error

\hat{w} is an unbiased estimate of the true w
For a test vector $\mathbf{x}^{\text {test }}$ we predict $\mathbf{w}^{\top} \mathbf{x}^{\text {test }}$.
(Squared) prediction error: $P E^{2}=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}^{\text {test }}-\mathbf{w}^{\top} \mathbf{x}_{i}^{\text {test }}\right)^{2}$
Can show:

- PE is has mean 0
- variance grows with number of features (p)

What if $p>n$?

- XX^{\top} is singular

REGULARIZATION

$p>n:$

- Cannot invert XX ${ }^{\top}$

REGULARIZATION

$p>n:$

- Cannot invert XX^{\top}
- We can invert if we add a small λ to the diagonal

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda /\right)^{-1} \mathbf{X y} \quad(I \text { is the identity matrix })
$$

REGULARIZATION

$p>n:$

- Cannot invert XX ${ }^{\top}$
- We can invert if we add a small λ to the diagonal

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda /\right)^{-1} \mathbf{X y} \quad(I \text { is the identity matrix })
$$

Introducing λ makes problem well-posed, but introduces bias

REGULARIZATION

$p>n:$

- Cannot invert XX ${ }^{\top}$
- We can invert if we add a small λ to the diagonal

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda /\right)^{-1} \mathbf{X y} \quad(I \text { is the identity matrix })
$$

Introducing λ makes problem well-posed, but introduces bias

- $\lambda=0$ recovers OLS
- Larger λ causes larger bias

REGULARIZATION

$p>n:$

- Cannot invert XX ${ }^{\top}$
- We can invert if we add a small λ to the diagonal

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda /\right)^{-1} \mathbf{X y} \quad(I \text { is the identity matrix })
$$

Introducing λ makes problem well-posed, but introduces bias

- $\lambda=0$ recovers OLS
- Larger λ causes larger bias
- $\lambda=\infty$?

REGULARIZATION

$p>n:$

- Cannot invert XX ${ }^{\top}$
- We can invert if we add a small λ to the diagonal

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda /\right)^{-1} \mathbf{X y} \quad(I \text { is the identity matrix })
$$

Introducing λ makes problem well-posed, but introduces bias

- $\lambda=0$ recovers OLS
- Larger λ causes larger bias
- $\lambda=\infty$? No variance!

REGULARIZATION

$p>n:$

- Cannot invert XX ${ }^{\top}$
- We can invert if we add a small λ to the diagonal

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda /\right)^{-1} \mathbf{X y} \quad(I \text { is the identity matrix })
$$

Introducing λ makes problem well-posed, but introduces bias

- $\lambda=0$ recovers OLS
- Larger λ causes larger bias
- $\lambda=\infty$? No variance!
λ trades-off bias and variance
Maybe a nonzero λ is actually good?

Ridge regression (A.K.A. Tikhonov regularization)

Recall $\hat{w}=\left(X X X^{\top}\right)^{-1} \mathbf{X} y$ solves $\hat{w}=\arg \min \left\|y-X^{\top} w\right\|^{2}$

Ridge regression (A.K.A. Tikhonov regularization)

Recall $\hat{w}=\left(X^{\top}\right)^{-1} \mathbf{X} y$ solves $\hat{w}=\arg \min \left\|y-X^{\top} w\right\|^{2}$
$\hat{w}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda l\right)^{-1} \mathrm{Xy}$ solves

$$
\hat{\mathbf{w}}_{\lambda}=\operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}):=\operatorname{argmin} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Ridge regression (A.K.A. Tikhonov regularization)

Recall $\hat{w}=\left(X X^{\top}\right)^{-1} \mathbf{X} y$ solves $\hat{w}=\arg \min \left\|y-X^{\top} w\right\|^{2}$
$\hat{w}_{\lambda}=\left(X X^{\top}+\lambda l\right)^{-1} X y$ solves

$$
\hat{\mathbf{w}}_{\lambda}=\operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}):=\operatorname{argmin} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

$\|w\|_{2}^{2}=\sum_{i=1}^{p} w_{i}^{2}$ is the squared ℓ_{2}-norm
$\lambda\|\mathbf{w}\|_{2}$ is the shrinkage penalty.

Ridge regression (A.K.A. Tikhonov regularization)

Recall $\hat{w}=\left(X X^{\top}\right)^{-1} X y$ solves $\hat{w}=\arg \min \left\|y-X^{\top} w\right\|^{2}$
$\hat{w}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda l\right)^{-1} \mathrm{Xy}$ solves

$$
\hat{\mathbf{w}}_{\lambda}=\operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}):=\operatorname{argmin} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

$\|w\|_{2}^{2}=\sum_{i=1}^{p} w_{i}^{2}$ is the squared ℓ_{2}-norm
$\lambda\|\mathbf{w}\|_{2}$ is the shrinkage penalty.
Favours w's with smaller components

Ridge regression (A.K.A. Tikhonov regularization)

Recall $\hat{w}=\left(X X^{\top}\right)^{-1} X y$ solves $\hat{w}=\arg \min \left\|y-X^{\top} w\right\|^{2}$
$\hat{w}_{\lambda}=\left(\mathrm{XX}^{\top}+\lambda l\right)^{-1} \mathrm{Xy}$ solves

$$
\hat{\mathbf{w}}_{\lambda}=\operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}):=\operatorname{argmin} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

$\|w\|_{2}^{2}=\sum_{i=1}^{p} w_{i}^{2}$ is the squared ℓ_{2}-norm
$\lambda\|\mathbf{w}\|_{2}$ is the shrinkage penalty.
Favours w's with smaller components
λ trades of small training error with 'simple’ solutions

Ridge regression (A.K.A. Tikhonov regularization)

Recall $\hat{w}=\left(X X^{\top}\right)^{-1} \mathbf{X} y$ solves $\hat{w}=\arg \min \left\|y-X^{\top} w\right\|^{2}$
$\hat{w}_{\lambda}=\left(X X X^{\top}+\lambda l\right)^{-1} X y$ solves

$$
\hat{\mathbf{w}}_{\lambda}=\operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}):=\operatorname{argmin} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

$\|w\|_{2}^{2}=\sum_{i=1}^{p} w_{i}^{2}$ is the squared ℓ_{2}-norm
$\lambda\|\mathbf{w}\|_{2}$ is the shrinkage penalty.
Favours w's with smaller components
λ trades of small training error with 'simple’ solutions
$\ell_{2} /$ ridge/Tikhonov regularization

Ridge regression (solution)

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Ridge regression (solution)

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

In the 1-dimensional case,

$$
\hat{w}_{\lambda}=\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{x}^{\top} \mathbf{y}
$$

Ridge regression (solution)

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

In the 1-dimensional case,

$$
\begin{aligned}
\hat{w}_{\lambda} & =\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{x}^{\top} \mathbf{y} \\
& =\frac{\mathbf{x}^{\top} \mathbf{x}}{\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)} \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}}
\end{aligned}
$$

Ridge regression (solution)

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

In the 1-dimensional case,

$$
\begin{aligned}
\hat{w}_{\lambda} & =\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{x}^{\top} \mathbf{y} \\
& =\frac{\mathbf{x}^{\top} \mathbf{x}}{\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)} \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}} \\
& =c \hat{w} \quad(c<1)
\end{aligned}
$$

Ridge regression (solution)

Simple modification of the least-squares solution:

$$
\hat{\mathbf{w}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

In the 1-dimensional case,

$$
\begin{aligned}
\hat{w}_{\lambda} & =\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{x}^{\top} \mathbf{y} \\
& =\frac{\mathbf{x}^{\top} \mathbf{x}}{\left(\mathbf{x}^{\top} \mathbf{x}+\lambda \mathbf{I}_{p}\right)} \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}} \\
& =c \hat{w} \quad(c<1)
\end{aligned}
$$

Shrinks least-squares solution.

Ridge Regression

Credit data set (average credit card debt)

James, Witten, Hastic and Tibshirani

How do we choose λ ?

Cross-validaton:

How do we choose λ ?

Cross-validaton:

- Pick a set of λ^{\prime} s
- For k th fold of cross-validation:

How do we choose λ ?

Cross-validaton:

- Pick a set of λ^{\prime} s
- For kth fold of cross-validation:
- For each λ :
- Solve the regularized least squares problem on training data.
- Evaluate estimated w on held-out data (call this $P E_{\lambda, k}$).

How do we choose λ ?

Cross-validaton:

- Pick a set of λ 's
- For kth fold of cross-validation:
- For each λ :
- Solve the regularized least squares problem on training data.
- Evaluate estimated \mathbf{w} on held-out data (call this $P E_{\lambda, k}$).
- Pick $\hat{\lambda}=\operatorname{argmin}$ mean $\left(P E_{\lambda}\right)$ or $\quad\left(\operatorname{argmin}\left(\operatorname{mean}\left(P E_{\lambda}\right)+\operatorname{stderr}\left(P E_{\lambda}\right)\right)\right)$

How do we choose λ ?

Cross-validaton:

- Pick a set of λ 's
- For kth fold of cross-validation:
- For each λ :
- Solve the regularized least squares problem on training data.
- Evaluate estimated \mathbf{w} on held-out data (call this $P E_{\lambda, k}$).
- Pick $\hat{\lambda}=\operatorname{argmin}$ mean $\left(P E_{\lambda}\right)$ or $\quad\left(\operatorname{argmin}\left(\operatorname{mean}\left(P E_{\lambda}\right)+\operatorname{stderr}\left(P E_{\lambda}\right)\right)\right)$
- Having chosen $\hat{\lambda}$ solve regularized least square on all data

DOES THIS WORK?

DOES THIS WORK?

Ridge regression improves performance by reducing variance

DOES THIS WORK?

Ridge regression improves performance by reducing variance

- does not perform feature selection
- just shrinks components of w towards 0

For the former: Lasso

REGULARIZATION AS CONSTRAINED OPTIMIZATION

$\operatorname{argmin}\left(\mathbf{y}-\mathbf{X}^{\top} \mathbf{w}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \quad$ is equivalent to
$\operatorname{argmin}\left(\mathbf{y}-\mathbf{X}^{\top} \mathbf{w}\right)^{2} \quad$ s.t. $\|\mathbf{w}\|_{2}^{2} \leq \gamma$
(Note: γ will depend on data)

Regularization as constrained optimization

$\operatorname{argmin}\left(y-\mathbf{X}^{\top} \mathbf{w}\right)^{2}+\lambda\|w\|_{2}^{2} \quad$ is equivalent to
$\operatorname{argmin}\left(\mathbf{y}-\mathbf{X}^{\top} \mathbf{w}\right)^{2} \quad$ s.t. $\|\mathbf{w}\|_{2}^{2} \leq \gamma$
(Note: γ will depend on data)
First problem: regularized optimization
Second problem: constrained optimization

Regularization as constrained optimization

$\operatorname{argmin}\left(y-\mathbf{X}^{\top} \mathbf{w}\right)^{2}+\lambda\|w\|_{2}^{2} \quad$ is equivalent to
$\operatorname{argmin}\left(\mathbf{y}-\mathbf{X}^{\top} \mathbf{w}\right)^{2} \quad$ s.t. $\|\mathbf{w}\|_{2}^{2} \leq \gamma$
(Note: γ will depend on data)
First problem: regularized optimization
Second problem: constrained optimization

