Stats 598z: Homework 7

Due before midnight Monday, Apr 30

Important:

R code, tables and figures should be part of a single .pdf or .html files from R Markdown and knitr. See the class reading lists for a short tutorial.
Include R commands for all output unless explicitly told not to.
If you collaborated with anyone else, mention their names and the nature of the collaboration

1 The law of large numbers

This assignment uses ggvis with reactive programming, see the last slide of lecture 20. Create a dataframe with three columns: (indx, value, running_mean). Initially all are initialized to 0 . Write code to
(a) Every 200 ms , add a new row to the data-frame, with indx increasing by 1 , value assigned a random value from the normal distribution, and running_mean giving the mean of all values so far. Include a ggvis interface, so that you display a video of the evolution of the running_mean with time. [15pts]
(b) Change the ggvis part of the code, so it rather that updating the trajectory of running_mean, it plots the histogram of value every 200 ms .
[10pts]
For both parts, look at the documentation of ggvis to keep the x - and y - limits clamped over some suitable range (hint: see http://stackoverflow.com/questions/24491783/ggvis-density-plot-xlim-xlab)

2 Monte Carlo sampling

- Consider two points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$. The coordinates of p_{1} are distributed as Gaussian with mean 0 , and of p_{2}, as Gaussian with mean 1 . You want to calculate the average length of the line-segment connecting two such points. Get a Monte Carlo estimate of this using 5000 samples. Recall the procedure: sample 5000 instances of p_{1} and p_{2} from their distributions, calculate the length of the line joining them for each instance and then calculate the average.
[15pts]
- Repeat the above procedure 1000 times, getting a random estimate each time. Plot a histogram of these values using ggvis. Include a tooltip that give the value in bin of the histogram you're pointing at, which is highlighted in red (see the slides from Lecture 20).
[10pts]

3 Importance sampling

(a) What is the mean and standard deviation of the sum of 100 fair dice?
(b) Write a few lines of R to simulate the output of 100 fair die a thousand times. Plot the histogram of the sum, and show that the mean and standard deviation match the previous question.
(c) Use the pnorm function to calculate the log-probability a Gaussian with this mean and standard deviation exceeds 450.
(d) What fraction of your outcomes had a sum exceeding 450? This is your Monte Carlo estimate.
(e) Now, simulate 100 biased dice, with each die having probability proportional to i of showing side i. Do this 1000 times. Plot the histogram of the sum of these values. How many times does the sum exceed 450 ?
(f) Calculate the log-probability (under the biased dice) of each of the 1000 outcomes. Do not use forloops. (note that the log-probability of a 100-dice outcome is the sum of the log-probabilities of the outputs of each of the 100 dice that constitute it).
(g) What is the log-probability of any outcome under the fair dice?
(h) Given the two 1000 -vectors of log-probabilities of the 1000 outputs under the biased and fair dice, obtain an importance sampling estimate of the log-probability that the sum of 100 dice exceeds 450 [10]

