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NORMAL

The Multivariate normal (MVN) density on RY:
1 Te—1
(X = p) 27X = )

1
p(X|p, X) = Wexp (

Given N i.i.d. observations X = {x1,...,xy}, the likelihood is

N
ﬁ(X’M7 Z) = H p(Xi‘:uv z)

=1

114



NORMAL

The Multivariate normal (MVN) density on RY:

p(x|u. E) = (zlm o (;(X ) m)

Given N i.i.d. observations X = {x1,...,xy}, the likelihood is

N
ﬁ(X’M7 Z) = H p(Xi‘:uv z)

=1

Maximum likelihood estimation (MLE): learn parameters by
maximizing L(X|w, X) w.rt p and x.

How? Calculate derivatives and set to 0.
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MLE FOR THE MVN

More convenient is the log-likelihood ¢(X|u, X) = log L£(X|u, X):
O(X|p, T Zlogp (i, T

For the Gaussian,

1 . N
(X T) = =35 D (% — )" (xi — p) — 5 log || — const

214



MLE FOR THE MVN

More convenient is the log-likelihood ¢(X|u, X) = log L£(X|u, X):
O(X|p, T Zlogp (i, T

For the Gaussian,

1 . N
(X T) = =35 D (% — )" (xi — p) — 5 log || — const

ML = ZXH Ty = NZ(X’ ) (X — pum) "

214



MLE FOR THE MVN

More convenient is the log-likelihood ¢(X|u, X) = log L£(X|u, X):

O(X|p, T Zlogp (i, T

For the Gaussian,

1 . N
(X T) = =35 D (% — )" (xi — p) — 5 log || — const

ML = ZXH Ty = NZ(X’ ) (X — pum) "

MLE: moment matching (set mean/covariance to that of data)

Holds for exponential family distributions (later)
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DISCRETE DISTRIBUTION

Consider a K-component discrete distribution = = (m, ..., mk)

- forX ~m, p(X=c¢) = 7.
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DISCRETE DISTRIBUTION

Consider a K-component discrete distribution = = (m, .. .

- forX ~m, p(X=c¢) = 7.
- Equivalently,

K

K
p() = [[ 7= = exp(>_ 8(X = ) log mc)

= c=1

Given data, what is MLE of ©?

N
1
Te = Nz;é(x, = ()
j=

77TK)

314



BACK TO CLUSTERING

Last week we saw a few clustering algorithms.

We also saw some limitations:

- Limited control on the cluster shapes (e.g. spherical clusters
in k-means).

- Cannot capture variability across clusters.

- Cannot capture uncertainty in cluster assignments.

- Cannot capture information about relative cluster sizes.

44



MODEL-BASED CLUSTERING

We could adjust loss-function/optimization algorithm.
Different approach: directly model data-generation process
- Can capture much richer structure more intuitively.

- Can make predictions about future data.

- Can deal with missing data naturally.
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FINITE MIXTURE MODELS

Like k-means, fix the number of clusters to K.

- component ¢ has parameter 6.

- observations from cluster ¢ distributed as p(x|6c)
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FINITE MIXTURE MODELS

Like k-means, fix the number of clusters to K.

- component ¢ has parameter 6.

- observations from cluster ¢ distributed as p(x|6c)

Draw cluster from =, a K-component probability vector

Today we will consider the mixture of Gaussians (MoG)

- each component is a Gaussian
-+ 0 = (e, £c) Is its mean and covariance
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MIXTURE OF GAUSSIANS (MOG)

To generate the ith observation:

Ci~T Sample it's cluster assignment
X ~ N (Xi|tie,» Xe;) Sample it's value
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MIXTURE OF GAUSSIANS (MOG)

To generate the ith observation:

Ci~T Sample it's cluster assignment
X ~ N (Xi|tie,» Xe;) Sample it's value

Joint probability:

P(X, ..., XN C1y - -, CN |,y E ch (Xilpte;, Zc,)

- H H [7rj./\/'(X,-|,uj, Zj)]ﬂ(c’:j)

i



MODEL-BASED CLUSTERING

sssss

Given observations X = {x, ..., Xy}, we face three problems:

- What are the ¢;? (inference)
- Whatis m and 0c = (uc, 2c)?  (learning)

- What is K? (model selection, not covered here) ,
8/14



LEARNING

Imagine we had the cluster assignments C. We saw:

1(ci=j
P(X1a‘"7XN>C'|7"'7CN|7T7‘L7 HH 7Tj X’N/, } (' J)
i=1j=1

/< K
_ (H (Wj)N’) (H H N(Xiﬂjvzj))
P j=1{i s.t. ¢=j}

Conveniently separates out into = and component parameters.

K K
log P(X7 C|7T,,U,,Z) = (Z N/ |Og7T/) (Z Z IOgN(X/,upzj))
=

j=1{i s.t. ¢;=j}
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LEARNING

K K
log P(X, |, p, X) = (Zleong) (Z > Iog/\/'(X,,uJ,ZI)>
j=1

j=1{i s.t. ¢;=j}
MLE requires three sets of ‘sufficient statistics”:

- The number of observations assigned to each cluster (N;).

- The empirical mean and mean-square of obs. in each cluster

(I;]l Z X,‘,Nl Z X,Xi—r)

I st o=y U {ist o=}
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k-means assigns obs. to clusters given parameters. Good idea?

N4



INFERENCE

k-means assigns obs. to clusters given parameters. Good idea?
For obs. x;, what is the conditional probability over ¢;?
P(Xi7 Ci|7T7 22 z)

Pl 1 B) = P(xi|m, 1, X)
! I )

K

j=1
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INFERENCE

k-means assigns obs. to clusters given parameters. Good idea?
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INFERENCE

k-means assigns obs. to clusters given parameters. Good idea?

For obs. x;, what is the conditional probability over ¢;?
P(Xia Ci|7T7 22 z)
P(xi|T, p, X)

K
P(Xi7 Ci|7T7’*"7 z) = H [ (X |M}7Z )]]l(c,
j=1

P(C,“X,‘, T, [, Z) =

* proportional to prior probability of cluster j, m;
* proportional to compatibility obs. i with parameters 6

Written as r;.: ‘responsibility’ of cluster ¢ for obs. i.

rr <- rep(0,K)
for(i in 1:K) rr[i] <- pi[il#dmvnorm(x, mu[[i]],sigma[[i]])

rr <- rr / sum(rr); i



THE MIXTURE OF GAUSSIANS

How do we update parameters given these probabilities?

N
o= Z,’:1 licXi
- N
> im lic
N T
T Doim fic XiX;
Thp ==y
Zi:1 lic

1N
Wc:Nz;ric
1=
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THE MIXTURE OF GAUSSIANS

How do we update parameters given these probabilities?

N
o= Z,’:1 licXi
- N
> ie Tic
N T
T i lie XiX;
Thp ==y
Zi:1 lic

1N
Wc:Nz;ric
1=

Compare with when we actually knew the cluster assignments.
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THE EM ALGORITHM

Initialize parameters 7, {(uc, Xc)} arbitrarily
Calculate the observation responsibilities r;. given parameters
Update parameters given responsibilities

Repeat till convergence
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THE EM ALGORITHM

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|7, p1, £) = log Y P(X, (|, 1, T)
c=C

1414



THE EM ALGORITHM

Suprising fact: EM converges to stationary point of the
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THE EM ALGORITHM

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|7, p1, £) = log Y P(X, (|, 1, T)
c=C

Can directly calculate gradients w.rt. parameters and optimize.

Doable but messy:

- Sums inside logarthms is inconvenient.
- Need to calculate gradients w.rt. covariance matrices.

- Need to choose step sizes.
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