
lecture 9: the em (expectation-
maximization) algorithm
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

September 18, 2019

Maximum likelihood estimation for the Multivariate
normal

The Multivariate normal (MVN) density on Rd:

p(x|µ,Σ) = 1√
(2π)d|Σ|

exp

(
− 12(x− µ)TΣ−1(x− µ)

)
Given N i.i.d. observations X ≡ {x1, . . . , xN}, the likelihood is

L(X|µ,Σ) =
N∏
i=1

p(xi|µ,Σ)

Maximum likelihood estimation (MLE): learn parameters by
maximizing L(X|µ,Σ) w.r.t µ and Σ.

How? Calculate derivatives and set to 0.

1/14

Maximum likelihood estimation for the Multivariate
normal

The Multivariate normal (MVN) density on Rd:

p(x|µ,Σ) = 1√
(2π)d|Σ|

exp

(
− 12(x− µ)TΣ−1(x− µ)

)
Given N i.i.d. observations X ≡ {x1, . . . , xN}, the likelihood is

L(X|µ,Σ) =
N∏
i=1

p(xi|µ,Σ)

Maximum likelihood estimation (MLE): learn parameters by
maximizing L(X|µ,Σ) w.r.t µ and Σ.

How? Calculate derivatives and set to 0.

1/14

MLE for the MVN

More convenient is the log-likelihood ℓ(X|µ,Σ) = logL(X|µ,Σ):

ℓ(X|µ,Σ) =
N∑
i=1

log p(xi|µ,Σ)

For the Gaussian,

ℓ(X|µ,Σ) = − 12

N∑
o=1

(xi − µ)TΣ−1(xi − µ)− N
2 log |Σ| − const

µML =
1
N

N∑
i=1

xi, ΣML =
1
N

N∑
i=1

(xi − µML)(xi − µML)
⊤

MLE: moment matching (set mean/covariance to that of data)

Holds for exponential family distributions (later)

2/14

MLE for the MVN

More convenient is the log-likelihood ℓ(X|µ,Σ) = logL(X|µ,Σ):

ℓ(X|µ,Σ) =
N∑
i=1

log p(xi|µ,Σ)

For the Gaussian,

ℓ(X|µ,Σ) = − 12

N∑
o=1

(xi − µ)TΣ−1(xi − µ)− N
2 log |Σ| − const

µML =
1
N

N∑
i=1

xi, ΣML =
1
N

N∑
i=1

(xi − µML)(xi − µML)
⊤

MLE: moment matching (set mean/covariance to that of data)

Holds for exponential family distributions (later)

2/14

MLE for the MVN

More convenient is the log-likelihood ℓ(X|µ,Σ) = logL(X|µ,Σ):

ℓ(X|µ,Σ) =
N∑
i=1

log p(xi|µ,Σ)

For the Gaussian,

ℓ(X|µ,Σ) = − 12

N∑
o=1

(xi − µ)TΣ−1(xi − µ)− N
2 log |Σ| − const

µML =
1
N

N∑
i=1

xi, ΣML =
1
N

N∑
i=1

(xi − µML)(xi − µML)
⊤

MLE: moment matching (set mean/covariance to that of data)

Holds for exponential family distributions (later)
2/14

Discrete distribution

Consider a K-component discrete distribution π = (π1, . . . , πK)

• for X ∼ π, p(X = c) = πc.

• Equivalently,

p(X) =
K∏
c=1

π
δ(X=c)
i = exp(

K∑
c=1

δ(X = c) log πc)

Given data, what is MLE of π?

πc =
1
N

N∑
i=1

δ(xi = c)

3/14

Discrete distribution

Consider a K-component discrete distribution π = (π1, . . . , πK)

• for X ∼ π, p(X = c) = πc.
• Equivalently,

p(X) =
K∏
c=1

π
δ(X=c)
i = exp(

K∑
c=1

δ(X = c) log πc)

Given data, what is MLE of π?

πc =
1
N

N∑
i=1

δ(xi = c)

3/14

Discrete distribution

Consider a K-component discrete distribution π = (π1, . . . , πK)

• for X ∼ π, p(X = c) = πc.
• Equivalently,

p(X) =
K∏
c=1

π
δ(X=c)
i = exp(

K∑
c=1

δ(X = c) log πc)

Given data, what is MLE of π?

πc =
1
N

N∑
i=1

δ(xi = c)

3/14

Back to clustering

Last week we saw a few clustering algorithms.

We also saw some limitations:

• Limited control on the cluster shapes (e.g. spherical clusters
in k-means).

• Cannot capture variability across clusters.
• Cannot capture uncertainty in cluster assignments.
• Cannot capture information about relative cluster sizes.

4/14

Model-based clustering

We could adjust loss-function/optimization algorithm.

Different approach: directly model data-generation process

• Can capture much richer structure more intuitively.
• Can make predictions about future data.
• Can deal with missing data naturally.

5/14

Finite mixture models

Like k-means, fix the number of clusters to K.

• component c has parameter θc
• observations from cluster c distributed as p(x|θc)

Draw cluster from π, a K-component probability vector

Today we will consider the mixture of Gaussians (MoG)

• each component is a Gaussian
• θc = (µc,Σc) is its mean and covariance

6/14

Finite mixture models

Like k-means, fix the number of clusters to K.

• component c has parameter θc
• observations from cluster c distributed as p(x|θc)

Draw cluster from π, a K-component probability vector

Today we will consider the mixture of Gaussians (MoG)

• each component is a Gaussian
• θc = (µc,Σc) is its mean and covariance

6/14

Finite mixture models

Like k-means, fix the number of clusters to K.

• component c has parameter θc
• observations from cluster c distributed as p(x|θc)

Draw cluster from π, a K-component probability vector

Today we will consider the mixture of Gaussians (MoG)

• each component is a Gaussian
• θc = (µc,Σc) is its mean and covariance

6/14

Mixture of Gaussians (MoG)

To generate the ith observation:

ci ∼ π Sample it’s cluster assignment
xi ∼ N (xi|µci ,Σci) Sample it’s value

Joint probability:

P(x1, . . . , xN, c1, . . . , cN|π,µ,Σ) =
N∏
i=1

πciN (xi|µci ,Σci)

=
N∏
i=1

K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)

7/14

Mixture of Gaussians (MoG)

To generate the ith observation:

ci ∼ π Sample it’s cluster assignment
xi ∼ N (xi|µci ,Σci) Sample it’s value

Joint probability:

P(x1, . . . , xN, c1, . . . , cN|π,µ,Σ) =
N∏
i=1

πciN (xi|µci ,Σci)

=
N∏
i=1

K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)

7/14

Model-based clustering

0.0

2.5

5.0

7.5

10.0

−2.5 0.0 2.5
x

y

class

A

B

Given observations X = {x1, . . . , xN}, we face three problems:

• What are the ci? (inference)
• What is π and θc = (µc,Σc)? (learning)
• What is K? (model selection, not covered here)

8/14

Learning

Imagine we had the cluster assignments C. We saw:

P(x1, . . . , xN,c1, . . . , cN|π,µ,Σ) =
N∏
i=1

K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)
=

 K∏
j=1

(
πj
)Nj K∏

j=1

∏
{i s.t. ci=j}

N (xi|µj,Σj)

Conveniently separates out into π and component parameters.

log P(X, C|π,µ,Σ) =

 K∑
j=1

Nj log πj

 K∑
j=1

∑
{i s.t. ci=j}

logN (xi|µj,Σj)

9/14

Learning

log P(X, C|π,µ,Σ) =

 K∑
j=1

Nj log πj

 K∑
j=1

∑
{i s.t. ci=j}

logN (xi|µj,Σj)

MLE requires three sets of ‘sufficient statistics’:

• The number of observations assigned to each cluster (Nj).
• The empirical mean and mean-square of obs. in each cluster 1

Nj

∑
{i s.t. ci=j}

xi,
1
Nj

∑
{i s.t. ci=j}

xix⊤i

10/14

Inference

k-means assigns obs. to clusters given parameters. Good idea?

For obs. xi, what is the conditional probability over ci?

P(ci|xi, π,µ,Σ) =
P(xi, ci|π,µ,Σ)

P(xi|π,µ,Σ)

∝ P(xi, ci|π,µ,Σ) =

 K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)
• proportional to prior probability of cluster j, πj
• proportional to compatibility obs. i with parameters θj

Written as ric: ‘responsibility’ of cluster c for obs. i.
rr <- rep(0,K)
for(i in 1:K) rr[i] <- pi[i]*dmvnorm(x, mu[[i]],sigma[[i]])
rr <- rr / sum(rr);

11/14

Inference

k-means assigns obs. to clusters given parameters. Good idea?

For obs. xi, what is the conditional probability over ci?

P(ci|xi, π,µ,Σ) =
P(xi, ci|π,µ,Σ)

P(xi|π,µ,Σ)

∝ P(xi, ci|π,µ,Σ) =

 K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)

• proportional to prior probability of cluster j, πj
• proportional to compatibility obs. i with parameters θj

Written as ric: ‘responsibility’ of cluster c for obs. i.
rr <- rep(0,K)
for(i in 1:K) rr[i] <- pi[i]*dmvnorm(x, mu[[i]],sigma[[i]])
rr <- rr / sum(rr);

11/14

Inference

k-means assigns obs. to clusters given parameters. Good idea?

For obs. xi, what is the conditional probability over ci?

P(ci|xi, π,µ,Σ) =
P(xi, ci|π,µ,Σ)

P(xi|π,µ,Σ)

∝ P(xi, ci|π,µ,Σ) =

 K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)
• proportional to prior probability of cluster j, πj
• proportional to compatibility obs. i with parameters θj

Written as ric: ‘responsibility’ of cluster c for obs. i.
rr <- rep(0,K)
for(i in 1:K) rr[i] <- pi[i]*dmvnorm(x, mu[[i]],sigma[[i]])
rr <- rr / sum(rr);

11/14

Inference

k-means assigns obs. to clusters given parameters. Good idea?

For obs. xi, what is the conditional probability over ci?

P(ci|xi, π,µ,Σ) =
P(xi, ci|π,µ,Σ)

P(xi|π,µ,Σ)

∝ P(xi, ci|π,µ,Σ) =

 K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)
• proportional to prior probability of cluster j, πj
• proportional to compatibility obs. i with parameters θj

Written as ric: ‘responsibility’ of cluster c for obs. i.

rr <- rep(0,K)
for(i in 1:K) rr[i] <- pi[i]*dmvnorm(x, mu[[i]],sigma[[i]])
rr <- rr / sum(rr);

11/14

Inference

k-means assigns obs. to clusters given parameters. Good idea?

For obs. xi, what is the conditional probability over ci?

P(ci|xi, π,µ,Σ) =
P(xi, ci|π,µ,Σ)

P(xi|π,µ,Σ)

∝ P(xi, ci|π,µ,Σ) =

 K∏
j=1

[
πjN (xi|µj,Σj)

]1(ci=j)
• proportional to prior probability of cluster j, πj
• proportional to compatibility obs. i with parameters θj

Written as ric: ‘responsibility’ of cluster c for obs. i.
rr <- rep(0,K)
for(i in 1:K) rr[i] <- pi[i]*dmvnorm(x, mu[[i]],sigma[[i]])
rr <- rr / sum(rr); 11/14

The mixture of Gaussians

How do we update parameters given these probabilities?

µ =

∑N
i=1 ricxi∑N
i=1 ric

Σ+ µµ⊤ =

∑N
i=1 ric xix⊤i∑N

i=1 ric

πc =
1
N

N∑
i=1

ric

Compare with when we actually knew the cluster assignments.

12/14

The mixture of Gaussians

How do we update parameters given these probabilities?

µ =

∑N
i=1 ricxi∑N
i=1 ric

Σ+ µµ⊤ =

∑N
i=1 ric xix⊤i∑N

i=1 ric

πc =
1
N

N∑
i=1

ric

Compare with when we actually knew the cluster assignments.

12/14

The EM algorithm

Initialize parameters π, {(µc,Σc)} arbitrarily

Calculate the observation responsibilities ric given parameters

Update parameters given responsibilities

Repeat till convergence

13/14

The EM algorithm

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|π,µ,Σ) = log
∑
C=C

P(X, C|π,µ,Σ)

Can directly calculate gradients w.r.t. parameters and optimize.

Doable but messy:

• Sums inside logarthms is inconvenient.
• Need to calculate gradients w.r.t. covariance matrices.
• Need to choose step sizes.

14/14

The EM algorithm

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|π,µ,Σ) = log
∑
C=C

P(X, C|π,µ,Σ)

Can directly calculate gradients w.r.t. parameters and optimize.

Doable but messy:

• Sums inside logarthms is inconvenient.
• Need to calculate gradients w.r.t. covariance matrices.
• Need to choose step sizes.

14/14

The EM algorithm

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|π,µ,Σ) = log
∑
C=C

P(X, C|π,µ,Σ)

Can directly calculate gradients w.r.t. parameters and optimize.

Doable but messy:

• Sums inside logarthms is inconvenient.
• Need to calculate gradients w.r.t. covariance matrices.
• Need to choose step sizes.

14/14

