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CLUSTERING

Given a large dataset, group data points into ‘clusters’.
Data points in the same cluster are similar in some sense.

E.g. cluster students scores (to decide grade)
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CLUSTERING

Given a large dataset, group data points into ‘clusters’.
Data points in the same cluster are similar in some sense.
E.g. cluster students scores (to decide grade)
Applications:
Compression/feature-extraction/exploration/visualization

- simpler representation of complex data

Image segmentation, community detectn, co-expressed genes
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CLUSTERING (CONTD.)

We are given N data vectors (X, ..., xy) in R9.
Let ¢; be the cluster assignment of observation x;:

ce{l---K

Equivalently, we can use one-hot (or 1-of-K) encoding:

1, if¢g=c
lic = .
0, otherwise
Eg. ¢=3 < r=(0,0,10,0,..,0)
Observe: ri. > 0 and 25:1 ric = 1just like a probability vector.

However, rjc is binary: we will relax this in later lectures.
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CLUSTER PARAMETERS

Associate cluster i with parameter 6; € R (cluster prototype).

Write @ = {61, ...,60k}, C={c1,...,cn} (or R={r,... ry}).
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Problem: Given data (x1,...,Xy) find 8 and C.

Define a loss-function L(6, C), and minimize it.
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CLUSTER PARAMETERS

Associate cluster i with parameter 6; € R (cluster prototype).
Write @ = {61,...,60¢}, C={c1,...,cn} (or R={r,... ry}).
Problem: Given data (x1,...,Xy) find 8 and C.

Define a loss-function L(6, C), and minimize it.

Start by defining a distance (or similarity measure) d(x, 6):

d
d(x,8)=> (x;—0;)>  Squared Euclidean or L, dist.
=

d
d(x,8) =" |x; — 6] L, distance
=
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CLUSTERING LOSS FUNCTION

We want all members of a cluster to be close to the prototype.
N
> d(x;,0c) = ricd(x;, 8c) should be small for each c.
i s.t. ¢;=c i=1

Overall loss function:

K
L(6,C) =" Y d(x,6)

c=1is.t.c;=c1
K N
=> ) rid(x;, 6c)

=1 j=1
Optimize over both:
- cluster assignments (discrete)
- cluster parameters (continuous)
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Minimizing L(@,C) is hard (O(NPK+)).
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K-MEANS

Minimizing L(@, C) is hard (O(NPX+T)).

Instead, use heuristic greedy (local-search) algorithms.
When d(-,-) is Euclidean, the most popular is Lloyd’s algorithm.
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K-MEANS

Minimizing L(@, C) is hard (O(NPX+T)).

Instead, use heuristic greedy (local-search) algorithms.
When d(-,-) is Euclidean, the most popular is Lloyd’s algorithm.

If we had the cluster parameters 8*, can we solve for C?
Copt = argmin L(6*, C)
If we had the cluster assignments C*, can we solve for 8?

0opt = argmin L(6,C")
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K-MEANS

Start with an initialialization of the parameters, call it 6.
Assign observations to nearest clusters, giving Ry.

Repeat foriin1to N:

- Recalculate cluster means, 6,

- Recalculate cluster assignments, R;

Coordinate-descent.
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K-MEANS

Start with an initialialization of the parameters, call it 6.
Assign observations to nearest clusters, giving Ry.

Repeat foriin1to N:

- Recalculate cluster means, 6,

- Recalculate cluster assignments, R;

Coordinate-descent.

Resulting algorithm has complexity O(INKD)
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[demo]

74



QUESTIONS

Does this algorithm converge to a global minimum?
Does it converge at all?

What is the convergence criteria?

8/14



LIMITATIONS

Local optima: Sensitive to initialization.
Solution: Run many times and pick the best clustering.

Empty clusters.
Solution: discard them, or use heuristics to assign

observations to them

Choosing K.
Solution: search over a set of K’s, penalizing larger values.

Requires circular clusters.
Solution: use some other method
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VARIATIONS TO K-MEANS

Modify distance functions.
L4 distance: k-medians

Modify the algorithm.
L, distance: k-medoids (exemplar-based)
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HIERARCHICAL CLUSTERING

k-means is a partitioning algorithm that assigns each
observation to a unique cluster.
Often there is no clear best clustering.
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HIERARCHICAL CLUSTERING

k-means is a partitioning algorithm that assigns each
observation to a unique cluster.
Often there is no clear best clustering.

!
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HIERARCHICAL CLUSTERING
k-means is a partitioning algorithm that assigns each

observation to a unique cluster.
Often is is natural to view data as having a hierarchical structure
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HIERARCHICAL CLUSTERING

k-means is a partitioning algorithm that assigns each
observation to a unique cluster.
Often is is natural to view data as having a hierarchical structure
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TwWO APPROACHES:

Top-down (divisive) clustering:

- Initialize all observations into a single cluster, and divide
clusters sequentially.

Bottom-up (agglomerative) clustering:

- Initialize each observation in its own cluster, and merge
clusters sequentially.

- More flexible, and more common.
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AGGLOMERATIVE CLUSTERING
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AGGLOMERATIVE CLUSTERING
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AGGLOMERATIVE CLUSTERING

Pick a distance function (e.g. Euclidean).

Pick a linkage criterion defining distance between two clusters:
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