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SOME PROPERTIES OF THE GAUSSIAN
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THE GAUSSIAN DISTRIBUTION, CONJUGACY AND BAYES' RULE

X1 NN(,U,,E)

@ e~N(0,2g)

. Y1:AX1+6

We have a Gaussian ‘prior’ on Xj.
We observe a noisy measurement Y1|Xy ~ N(AXq, Xg).
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X and Y jointly Gaussian: what is its mean and covariance?
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We have a Gaussian ‘prior’ on Xj.
We observe a noisy measurement Y;|X; ~ N (AX;y, ).
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X and Y jointly Gaussian: what is its mean and covariance?

Y is marginally Gaussian: what is its mean and covariance?
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THE GAUSSIAN DISTRIBUTION, CONJUGACY AND BAYES' RULE

X1 NN(,U,,E)

@ e~N(0,2g)

@ Y1:AX1+6

We have a Gaussian ‘prior’ on Xj.
We observe a noisy measurement Y;|X; ~ N (AX;y, ).
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X and Y jointly Gaussian: what is its mean and covariance?

Y is marginally Gaussian: what is its mean and covariance?

X|Y is Gaussian: what is its mean and covariance?
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PRODUCT OF GAUSSIAN DENSITIES:

Product of Gaussian densities is Gaussian a Gaussian density
(upto a multiplication constant)

RS

Intuition: sum of two quadratic functions is a quadratic
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PRODUCT OF GAUSSIAN DENSITIES:

Product of Gaussian densities is Gaussian a Gaussian density
(upto a multiplication constant)

Intuition: sum of two quadratic functions is a quadratic
Aside: need only specify prob. distrib. to a constant

- p(x) and C- p(x) represents the same, if C is independent of x

- Probabilities must integrate to 1
48



MARKOV CHAINS

Pi(X1) Py(Xiy1|X:)
R DRED

A sequence of random variables such that

'D(Xi—H |Xi7Xi—’Iv te 7X1) = P(XH-'I |XI)
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MARKOV CHAINS

We'll stick to homogeneous chains:

Pi(Xy) P(Xi1|X;)

In fact, with X; € ®P, we will consider:
X1 ~ N (0, Xo)

Xig1=AXi+¢€, € ~N(0,Xf)

If our chain has T steps, a TD-dimensional Gaussian!

In the figure, T = 4. In practice: thousands to millions.
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A HIDDEN MARKOV MODEL

We don't observe the chain directly:

Pi(X1) P(Xit1]X5)

P(Yi|X3)

Yi=BX;+¢, ¢(~N(0,X), Y e
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A HIDDEN MARKOV MODEL

We don’t observe the chain directly:
Pi(X1) P(Xit1|Xi)

P(Yi|X;)
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Yi=BX;+¢, (~N(0,X%), YRl

We want to answer questions like: What is p(Xj|Y1,---, Y7)?
{Xi,Yi} is a (D + d)T-dimensional Gaussian.
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A HIDDEN MARKOV MODEL

We don’t observe the chain directly:

Pi(Xy) P(Xi41]X5)

P(Y;|X:)

® @ ® ®

Yi=BXi+(, (~N(0,%;), YieRe

We want to answer questions like: What is p(Xj|Y1,---, Y7)?
{Xi,Yi} is a (D + d)T-dimensional Gaussian.
We ‘just’ have to look at conditionals?
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