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Some properties of the Gaussian
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Some properties of the Gaussian

Conditioning:[
X
Y

]
∼ N

([
µX
µY

]
,

[
ΣXX ΣXY
ΣYX ΣYY

])
, Y|(X = a) ∼ ?
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(
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)
Cost?
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The Gaussian distribution, conjugacy and Bayes’ rule

We have a Gaussian ‘prior’ on X1.
We observe a noisy measurement Y1|X1 ∼ N (AX1,ΣE).[

X
ϵ

]
→

[
X
Y

]
X and Y jointly Gaussian: what is its mean and covariance?

Y is marginally Gaussian: what is its mean and covariance?

X|Y is Gaussian: what is its mean and covariance?
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Product of Gaussian densities:

Product of Gaussian densities is Gaussian a Gaussian density
(upto a multiplication constant)
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Intuition: sum of two quadratic functions is a quadratic

Aside: need only specify prob. distrib. to a constant

• p(x) and C · p(x) represents the same, if C is independent of x
• Probabilities must integrate to 1
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Markov chains

A sequence of random variables such that

P(Xi+1|Xi, Xi−1, · · · , X1) = P(Xi+1|Xi)
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Markov chains

We’ll stick to homogeneous chains:

In fact, with Xi ∈ ℜD, we will consider:

X1 ∼ N (µ0,Σ0)

Xi+1 = AXi + ϵi, ϵi ∼ N (0,ΣE)

If our chain has T steps, a TD-dimensional Gaussian!
In the figure, T = 4. In practice: thousands to millions.
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A hidden Markov model

We don’t observe the chain directly:

Yi = BXi + ζi, ζ ∼ N (0,Σz), Yi ∈ ℜd

We want to answer questions like: What is p(Xi|Y1, · · · , YT)?
{Xi, Yi} is a (D+ d)T-dimensional Gaussian.
We ‘just’ have to look at conditionals?
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The Kalman filter

[board]

8/8


