LECTURE 6: DYNAMIC PROGRAMMING STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao Purdue University

September 5, 2019

Solve a complex problem by breaking it into simpler problems Recursion without recalculation:

- Relate solution of a problem to solutions of simpler problems (recursion)
- Identify and solve initial (base) problems
- Reuse existing solutions to compute more complicated solutions (memoization)

Setup: We can only compare heights one pair at a time. Naïve approach: build a binary relation matrix:

 $O(N^2)$ comparisons, but lots of redundancy. Can we do better? O(N)?

PROB 2: ORDER-DEPENDENT SUMS

Pick a set of unique integers. E.g. {1, 3, 4}. Find the number of ways to write *N* as sums of these.

E.g. for N = 5, the answer is 6:

$$5 = 1 + 1 + 1 + 1 + 7$$

= 1 + 1 + 3
= 1 + 3 + 1
= 3 + 1 + 1
= 1 + 4
= 4 + 1

http://web.stanford.edu/class/cs97si/
04-dynamic-programming.pdf

How do we solve for N = 1000?

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

Define a recursion. Observe that

- \cdot any sum ends with a 1,3 or 4.
- if the last term is *i*, the remaining sum to N i.
- $D_N = D_{N-1} + D_{N-3} + D_{N-4}$

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

Define a recursion. Observe that

- \cdot any sum ends with a 1,3 or 4.
- if the last term is *i*, the remaining sum to N i.

•
$$D_N = D_{N-1} + D_{N-3} + D_{N-4}$$

Also, $D_0 = D_1 = D_2 = 1, D_3 = 2$

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

Define a recursion. Observe that

- \cdot any sum ends with a 1,3 or 4.
- if the last term is *i*, the remaining sum to N i.

•
$$D_N = D_{N-1} + D_{N-3} + D_{N-4}$$

Also, $D_0 = D_1 = D_2 = 1, D_3 = 2$

```
ordered_sum <- function(N) {
  D <- rep(1,N); D[c(3,4)] <- c(2, 3)
  for(i in 5:N) {
    D[i] <- D[i-1] + D[i-3] + D[i-4] }
  return(D[N]) }</pre>
```

- a bag with (integer) capacity *W* lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

- a bag with (integer) capacity *W* lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

What is $\mathbb{V}(0)$?

How about $\mathbb{V}(1)$ and $\mathbb{V}(2)$?

- a bag with (integer) capacity *W* lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

What is $\mathbb{V}(0)$?

How about $\mathbb{V}(1)$ and $\mathbb{V}(2)$?

Can we express $\mathbb{V}(i)$ in terms of $\mathbb{V}(j), j < i$?

- a bag with (integer) capacity *W* lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

What is $\mathbb{V}(0)$?

How about $\mathbb{V}(1)$ and $\mathbb{V}(2)$?

Can we express $\mathbb{V}(i)$ in terms of $\mathbb{V}(j), j < i$?

$$\mathbb{V}(i) = \max_{j:w_j \leq i} \mathbb{V}(i - w_j) + v_j$$

A 2-DIMENSIONAL DYNAMIC PROGRAM

A DNA molecule is a sequence of nucleotides (A,T,G and C). Want to align two DNA sequences

Similarity can suggest functionality of a newly sequenced gene

Russell Doolittle and colleagues found similarities between cancer-causing gene and normal growth factor (PDGF) gene

A-A-C-T-A-T-G-G-C-C-A A-C-A-C-T-A-T-G-G-C-T

What is the best alignment?

A 2-DIMENSIONAL DYNAMIC PROGRAM

A DNA molecule is a sequence of nucleotides (A,T,G and C). Want to align two DNA sequences

Similarity can suggest functionality of a newly sequenced gene

Russell Doolittle and colleagues found similarities between cancer-causing gene and normal growth factor (PDGF) gene

Simple sources of misalignment:

Substitution:	A-A-C-T <mark>-G-</mark> G-A
	A-A-C-T <mark>-C</mark> -G-A
Insertion:	A-A-C <mark>-G-</mark> G-A
	A-A-C <mark>-*-</mark> G-A
Deletion:	A-A-C-T-*-G-A
	A-A-C-T <mark>-C-</mark> G-A

SEQUENCE ALIGNMENT

Given two sequences:

What is the best alignment?

SEQUENCE ALIGNMENT

Given two sequences:

A-A-C-T-A-T-G-G-C-C-A

A-C-A-C-T-A-T-G-G-C-T

Define a distance between two sequences:

- Each substitution has a cost C_S
- Each insertion/deletion has a cost C_G (gap penalty)
- In practice, these can depend on the nucleotides

A-<mark>A-</mark>*-C-T-A-T-G-G-C-C-A

A-<mark>C-A</mark>-C-T-A-T-G-G-*-C-T

This alignment has cost $2C_S + 2C_G$.

DYNAMIC PROGRAMMING RECURSION

Consider aligning to two strings S_1 and S_2 of length *i* and *j*: $S_1 = \dots -G-C-C-A$ and $S_2 = \dots -G-G-C-T$

DYNAMIC PROGRAMMING RECURSION

Consider aligning to two strings S_1 and S_2 of length *i* and *j*: $S_1 = \dots -G-C-C-A$ and $S_2 = \dots -G-G-C-T$ Three possibilities:

<u>The last two characters are matched:</u>

A	$C_M(i,j) =$	Cost(i - 1, j - 1) + Cost of match-	
T		ing elements $S_1(i)$ and $S_2(j)$.	
A gap in the first string:			
*	$C_l(i,j) =$	Cost(i, j - 1) + Cost of inserting	
T		gap after S ₂ (j).	
A gap in the second string:			

ngap in the second string.		eeena samg.	
	A	$C_D(i,j) =$	Cost(i - 1, j)+ Cost of inserting
	*		gap after S1(<i>i</i>).

The actual (best) cost:

 $Cost(i,j) = \min (C_M(i,j), C_I(i,j), C_D(i,j))$

[http://baba.sourceforge.net]

BACKTRACKING

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

BACKTRACKING

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall: $Cost(i,j) = min(C_M(i,j), C_I(i,j), C_D(i,j))$

BACKTRACKING

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall: $Cost(i, j) = min(C_M(i, j), C_I(i, j), C_D(i, j))$

• If $Cost(i, j) = C_M(i, j)$ then add $S_1(i)$ and $S_2(j)$ to the heads of strings 1 and 2 respectively, and decrement *i* and *j*.

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall: $Cost(i, j) = min(C_M(i, j), C_I(i, j), C_D(i, j))$

- If $Cost(i, j) = C_M(i, j)$ then add $S_1(i)$ and $S_2(j)$ to the heads of strings 1 and 2 respectively, and decrement *i* and *j*.
- If $Cost(i, j) = C_i(i, j)$ then add $S_1(i)$ to the head of strings 1, and decrement *i*.

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall: $Cost(i, j) = min(C_M(i, j), C_I(i, j), C_D(i, j))$

- If $Cost(i, j) = C_M(i, j)$ then add $S_1(i)$ and $S_2(j)$ to the heads of strings 1 and 2 respectively, and decrement *i* and *j*.
- If $Cost(i, j) = C_i(i, j)$ then add $S_1(i)$ to the head of strings 1, and decrement *i*.
- If $Cost(i,j) = C_D(i,j)$ then add $S_2(j)$ to the head of strings 2, and decrement *j*.

[http://baba.sourceforge.net]

Overall algorithm: Needleman-Wunsch algorithm.

Cost (for sequences of length *N* and *M*):

- Forward pass: O(NM) time (computations)
 O(NM) space (memory)
- Backward pass: O(N + M) time

We looked at dynamic programming to solve complicated looking problems by recursively solving simpler subproblems.

Next class we'll focus on a special problem, viz. Kalman filtering.