
lecture 2: function minimization
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

August 22, 2019



Global and local minima

Find minimum of some function f : RD → R.
(maximization is just minimizing −f).

No global information (e.g. only function values, derivatives).

Global minimum

Local minimum

Finding global minima is hard! Usually settle for local minima.

Even finding local minima is not easy. Usually need iterative
algorithms. (Exceptions?)

1/15



Global and local minima

Find minimum of some function f : RD → R.
(maximization is just minimizing −f).

No global information (e.g. only function values, derivatives).

Global minimum

Local minimum

Finding global minima is hard! Usually settle for local minima.

Even finding local minima is not easy. Usually need iterative
algorithms. (Exceptions?)

1/15



Gradient descent (iterative method)

Consider 1-d case. Let xold be our current value.

Update xnew as xnew = xold − η df
dx

∣∣∣
xold

The steeper the slope, the bigger the move.

η: ‘step-size’ or ‘learning rate’.

Choosing η requires care (not too large or too small):

Better methods adapt step-size according to the curvature of f.

2/15



Gradient descent in higher-dimensions

Also applies to higher dimensions: xnew = xold − η ∇f|xold
Again, need care choosing η

Alternately, at each step, set η by minimizing along ∇f

· Note: even the optimal step-size η can be inefficient:

−5

0

5

10

15

−5 0 5 10 15

Save computation and find decent (rather than best) step-size
· What is decent? 3/15



Wolfe conditions to decide step-size

Bad step sizes along direction p (for grad. descent, p = −∇f):

1) Big steps with little decrease 2) Small steps getting nowhere

Avoid (1): Avg. decrease at least some fraction of initial rate:

f(x+ ηp) ≤ f(x) + ηc1(∇f · p), c1 ∈ (0, 1) e.g. 0.1

Avoid (2): Final rate is greater than some fraction of initial rate:

∇f(x+ ηp) · p ≥ c2∇f(x) · p, c2 ∈ (0, 1) e.g. 0.9

4/15



Wolfe conditions to decide step-size

Bad step sizes along direction p (for grad. descent, p = −∇f):

1) Big steps with little decrease 2) Small steps getting nowhere

Avoid (1): Avg. decrease at least some fraction of initial rate:

f(x+ ηp) ≤ f(x) + ηc1(∇f · p), c1 ∈ (0, 1) e.g. 0.1

Avoid (2): Final rate is greater than some fraction of initial rate:

∇f(x+ ηp) · p ≥ c2∇f(x) · p, c2 ∈ (0, 1) e.g. 0.9

4/15



Wolfe conditions to decide step-size

Bad step sizes along direction p (for grad. descent, p = −∇f):

1) Big steps with little decrease 2) Small steps getting nowhere

Avoid (1): Avg. decrease at least some fraction of initial rate:

f(x+ ηp) ≤ f(x) + ηc1(∇f · p), c1 ∈ (0, 1) e.g. 0.1

Avoid (2): Final rate is greater than some fraction of initial rate:

∇f(x+ ηp) · p ≥ c2∇f(x) · p, c2 ∈ (0, 1) e.g. 0.9
4/15



Wolfe conditions

5/15



Wolfe conditions

5/15



Wolfe conditions

A simple way to satisfy Wolfe conditions:

Set p = −∇f, c1 = .1, c2 = .9

Start with η = 1, and while condition i is not satisfied, set
η = βiη (for β1 ∈ (0, 1), β2 > 1 and β1 ∗ β2 < 1)

6/15



Gradient flow

One way to understand/improve gradient descent is to view it
as an approximation to ‘gradient flow’.

Write xt for the position of a particle at time t, evolving as

dxt
dt = −∇f(xt), for some initialization at t = 0.

xt converges to x∗, the minimum of f as t increases

· At minimum, ∇f(x∗) = 0.

Typically, not easy to solve the differential eq. for xt
Different algs can be seen as approximations to this ideal

7/15



Forward and backward methods

∆xt
∆t ≈ dxt

dt = −∇f(xt) (forward Euler approximation)

=⇒ xt+∆t = xt −∆t∇f(xt)

This is just gradient descent with stepsize η = ∆t

xi+1 = xi − η∇f(xi)

Backward Euler approx =⇒ xt+∆t = xt −∆t∇f(xt+∆t)

For a step size η, the iterates are:

xi+1 = xi − η∇f(xi+1)

The updates are implicit (xi+1 is on both LHS and RHS).
Why do we care?

8/15



Forward and backward methods

∆xt
∆t ≈ dxt

dt = −∇f(xt) (forward Euler approximation)

=⇒ xt+∆t = xt −∆t∇f(xt)

This is just gradient descent with stepsize η = ∆t

xi+1 = xi − η∇f(xi)

Backward Euler approx =⇒ xt+∆t = xt −∆t∇f(xt+∆t)

For a step size η, the iterates are:

xi+1 = xi − η∇f(xi+1)

The updates are implicit (xi+1 is on both LHS and RHS).
Why do we care?

8/15



Backward Euler method

Backward method: xi+1 = xi − η∇f(xi+1)

Claim: this is the same as solving

xi+1 = arg min f(x) + 1
2η (x− xi)2

Also called a proximal point method

Now, we see that:

• f(xi+1) ≤ f(xi), unlike gradient descent. Has faster
convergence.

• This works even if ∇f is not defined!
• Can be generalized to different distance functions:

xi+1 = arg min f(x) + 1
2ηd(x, xi)

9/15



Backward Euler method

Backward method: xi+1 = xi − η∇f(xi+1)

Claim: this is the same as solving

xi+1 = arg min f(x) + 1
2η (x− xi)2

Also called a proximal point method

Now, we see that:

• f(xi+1) ≤ f(xi), unlike gradient descent. Has faster
convergence.

• This works even if ∇f is not defined!
• Can be generalized to different distance functions:

xi+1 = arg min f(x) + 1
2ηd(x, xi)

9/15



Other approaches to improving convergence

Newton’s method: uses second derivatives/Hessians:

xi+1 = xi − f′(xi)/f′′(xi)

For vector-valued x, writing Hf(xi) for the Hessian of f at xi,

xi+1 = xi − [Hf(xi)]−1∇f(xi)

Intuition:

• Stepsize is small when gradient is changing rapidly
• Each iteration uses f(xi),∇f(xi) and Hf(xi) to construct a
quadratic approximation to f, which is then minimized

10/15



Back to simple gradient descent

MLE: maximum likelihood estimation

Consider a set of observations X = (x1, · · · , xN).

Assume xi ∼ p(x|θ)

θMLE = argmax ℓ(θ) := argmax
N∑
i=1

logp(xi|θ)

The gradient of the log-likelihood is ∇ℓ(θ) =
∑N

i=1∇ logp(xi|θ)
(The average of the gradients of each datapoint.)

Starting with an initial θ0, iterate:

θi+1 = θi + ηi∇ℓ(θi)

11/15



Gradient descent (contd.)

∇ℓ(θ) =
N∑
i=1

∇ logp(xi|θ)

Cons:

• Calculating gradient requires evaluating likelihood N times.
(Each iteration must cycle through all datapoints.)

• Lots of redundancy, esp. for large N.

Pros:

• Convergence is better understood.

12/15



Stochastic gradient descent

Use a noisy gradient ∇̂ℓ.

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches Bi:

∇̂ℓ(θ) =
∑
j∈Bi

∇ logp(xj|θ)

13/15



Stochastic gradient descent

Use a noisy gradient ∇̂ℓ.

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches Bi:

∇̂ℓ(θ) =
∑
j∈Bi

∇ logp(xj|θ)

Pros:
• Calculating the gradient is O(B).
(Oǒten, each batch is just a single datapoint)

• Much faster convergence (just one sweep through the data
can get you a decent solution).

• Oǒten, you get better solutions.
• Useful for online systems, tracking θ that varies over time .

13/15



Stochastic gradient descent

Use a noisy gradient ∇̂ℓ.

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches Bi:

∇̂ℓ(θ) =
∑
j∈Bi

∇ logp(xj|θ)

Cons:
• Convergence analysis is harder.
• Noisy gradients mean the algorithm will never converge.
Typically need to reduce the step size every iteration.
We want

ηi → 0,
∞∑
i=1

ηi = ∞

E.g. ηi = a
b+i

13/15



Stochastic gradient descent with momentum

One way to accelarate convergence is to include a momentum
term:

θi+1 = θi + ηi∇̂ℓ(θi) + βi (θi − θi−1)︸ ︷︷ ︸
momentum

More generally,

θi+1 = θi + ηi∇̂ℓ(θi + γ(θi − θi−1)) + βi(θi − θi−1)

Include many popular algorithms:

• Polyak’s heavy ball method (HB): γ = 0
• Nesterov’s accelerated gradient (NAG): γi = βi

14/15



Stochastic gradient descent with momentum

One way to accelarate convergence is to include a momentum
term:

θi+1 = θi + ηi∇̂ℓ(θi) + βi (θi − θi−1)︸ ︷︷ ︸
momentum

More generally,

θi+1 = θi + ηi∇̂ℓ(θi + γ(θi − θi−1)) + βi(θi − θi−1)

Include many popular algorithms:

• Polyak’s heavy ball method (HB): γ = 0
• Nesterov’s accelerated gradient (NAG): γi = βi

14/15



Adaptive methods

Adaptive methods accelerate convergence by using the entire
history of iterates to determine step-sizes.

Oǒten take the general form

θi+1 = θi + ηiH−1
i ∇̂ℓ(θi + γ(θi − θi−1)) + βiH−1

i Hi−1(θi − θi−1)

where Hi is some combination of all previous gradients. E.g.

Hi = diag

 i∑
j=1

gj ◦ gj

 ,

with gj = ∇̂ℓ(θj + γ(θj − θj−1)), and ◦ element-wise product.

Examples are AdaGrad, Adam etc.

15/15



Adaptive methods

Adaptive methods accelerate convergence by using the entire
history of iterates to determine step-sizes.

Oǒten take the general form

θi+1 = θi + ηiH−1
i ∇̂ℓ(θi + γ(θi − θi−1)) + βiH−1

i Hi−1(θi − θi−1)

where Hi is some combination of all previous gradients. E.g.

Hi = diag

 i∑
j=1

gj ◦ gj

 ,

with gj = ∇̂ℓ(θj + γ(θj − θj−1)), and ◦ element-wise product.

Examples are AdaGrad, Adam etc.

15/15


