LECTURE 19: ROOT-FINDING AND MINIMIZATION

STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao Purdue University

November 13, 2019

Given some nonlinear function $f : \mathbb{R} \to \mathbb{R}$, solve

f(x)=0

Invariably need iterative methods.

Assume *f* is continuous (else things are really messy).

More we know about f (e.g. gradients), better we can do.

Better: faster (asymptotic) convergence.

f(a) and f(b) have opposite signs \rightarrow root lies in (a, b).

a and b bracket the root.

Finding an initial bracketing can be non-trivial. Typically, start with an initial interval and expand or contract.

Below, we assume we have an initial bracketing.

f(a) and f(b) have opposite signs \rightarrow root lies in (a, b).

a and b bracket the root.

Finding an initial bracketing can be non-trivial. Typically, start with an initial interval and expand or contract.

Below, we assume we have an initial bracketing.

Not always possible e.g. $f(x) = (x - a)^2$ (in general, multiple roots/nearby roots lead to trouble).

- Current interval = (a, b)
- Set $C = \frac{a+b}{2}$

- Current interval = (a, b)
- Set $C = \frac{a+b}{2}$
- New interval = (a, c) or (c, b)
 (whichever is a valid bracketing)

- Current interval = (a, b)
- Set $C = \frac{a+b}{2}$

- Current interval = (a, b)
- Set $C = \frac{a+b}{2}$

BISECTION METHOD (CONTD)

Let ϵ_n be the interval length at iteration n. Upperbounds error in root.

$$\epsilon_{n+1} = 0.5 \epsilon_n$$
 (Linear convergence)

BISECTION METHOD (CONTD)

Let ϵ_n be the interval length at iteration n. Upperbounds error in root.

 $\epsilon_{n+1} = 0.5 \epsilon_n$ (Linear convergence)

Linear convergence:

- each iteration reduces error by one significant figure.
- every (fixed) k iterations reduces error by one digit.
- \cdot error reduced exponentially with the number of iterations.

BISECTION METHOD (CONTD)

Let ϵ_n be the interval length at iteration n. Upperbounds error in root.

 $\epsilon_{n+1} = 0.5 \epsilon_n$ (Linear convergence)

Linear convergence:

- $\cdot\,$ each iteration reduces error by one significant figure.
- every (fixed) k iterations reduces error by one digit.
- \cdot error reduced exponentially with the number of iterations.

Superlinear convergence:

$$\lim_{n\to\infty} |\epsilon_{n+1}| = \mathsf{C} \times |\epsilon_n|^m \qquad (m > 1)$$

Quadratic convergence:

Number of significant figures *doubles* every iteration.

Linearly approximate *f* to find new approximation to root.

Linearly approximate *f* to find new approximation to root.

Secant method:

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

$$\lim_{n \to \infty} |\epsilon_{n+1}| = C \times |\epsilon_n|^{1.618}$$

• Bracketing (and thus convergence) not guaranteed.

Linearly approximate *f* to find new approximation to root.

Secant method:

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

$$\lim_{n \to \infty} |\epsilon_{n+1}| = C \times |\epsilon_n|^{1.618}$$

• Bracketing (and thus convergence) not guaranteed.

Linearly approximate f to find new approximation to root.

Secant method:

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

$$\lim_{n \to \infty} |\epsilon_{n+1}| = C \times |\epsilon_n|^{1.618}$$

· Bracketing (and thus convergence) not guaranteed.

False position:

- Can choose an old point that guarantees bracketing.
- Convergence analysis is harder.

In practice, people use more sophiticated algorithms.

Most popular is Brent's method.

Maintains bracketing by combining bisection method with a quadratic approximation.

Lots of book-keeping.

At any point uses both function evaluation as well as derivative to form a linear approximation.

At any point uses both function evaluation as well as derivative to form a linear approximation.

Taylor expansion: $f(x + \delta) = f(x) + \delta f'(x) + \frac{\delta^2}{2} f''(x) + \cdots$

At any point uses both function evaluation as well as derivative to form a linear approximation.

Taylor expansion: $f(x + \delta) = f(x) + \delta f'(x) + \frac{\delta^2}{2} f''(x) + \cdots$

Assume second- and higher-order terms are negligible. Given x_i , choose $x_{i+1} = x_i + \delta$ so that $f(x_{i+1}) = 0$:

At any point uses both function evaluation as well as derivative to form a linear approximation.

Taylor expansion: $f(x + \delta) = f(x) + \delta f'(x) + \frac{\delta^2}{2} f''(x) + \cdots$

Assume second- and higher-order terms are negligible. Given x_i , choose $x_{i+1} = x_i + \delta$ so that $f(x_{i+1}) = 0$:

$$0 = f(x_i) + \delta f'(x_i)$$

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$

Letting x^* be the root, we have

$$x_{i+1} - x^* = x_i - x^* - f(x_i)/f'(x_i)$$

$$\epsilon_{i+1} = \epsilon_i - f(x_i)/f'(x_i)$$

Letting x^* be the root, we have

$$x_{i+1} - x^* = x_i - x^* - f(x_i)/f'(x_i)$$

$$\epsilon_{i+1} = \epsilon_i - f(x_i)/f'(x_i)$$

Also since $x_i = x^* + \epsilon_i$,

$$f(x_i) \approx f(x^*) + \epsilon_i f'(x^*) + \frac{\epsilon_i^2}{2} f''(x^*)$$

Letting x^* be the root, we have

$$\begin{aligned} x_{i+1} - x^* &= x_i - x^* - f(x_i)/f'(x_i) \\ \epsilon_{i+1} &= \epsilon_i - f(x_i)/f'(x_i) \end{aligned}$$

Also since $x_i = x^* + \epsilon_i$,

$$f(x_i) \approx f(x^*) + \epsilon_i f'(x^*) + \frac{\epsilon_i^2}{2} f''(x^*)$$

This gives

$$\epsilon_{i+1} = -\frac{f''(x_i)}{2f'(x_i)}\epsilon_i^2$$

Letting x^* be the root, we have

$$x_{i+1} - x^* = x_i - x^* - f(x_i)/f'(x_i)$$

$$\epsilon_{i+1} = \epsilon_i - f(x_i)/f'(x_i)$$

Also since $x_i = x^* + \epsilon_i$,

$$f(x_i) \approx f(x^*) + \epsilon_i f'(x^*) + \frac{\epsilon_i^2}{2} f''(x^*)$$

This gives

$$\epsilon_{i+1} = -\frac{f''(x_i)}{2f'(x_i)}\epsilon_i^2$$

Quadratic convergence (assuming f'(x) is non-zero at the root)

PITFALLS OF NEWTON'S METHOD

Away from the root the linear approximation can be bad.

Can give crazy results (go off to infinity, cycles etc.)

However, once we have a decent solution can be used to rapidly 'polish the root'.

Often used in combination with some bracketing method.

Now have N functions F_1, F_2, \dots, F_N of N variables x_1, x_2, \dots, x_N Find (x_1, \dots, x_N) such that:

$$F_i(x_1, \cdots, x_N) = 0$$
 $i = 1 \text{ to } N$

Much harder than the 1-d case.

Much harder than optimization.

Newton's method

Again, consider a Taylor expansion:

$$\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{F}(\mathbf{x}) + \mathbf{J}(\mathbf{x}) \cdot \delta \mathbf{x} + O(\delta \mathbf{x}^2)$$

Here, $J(\mathbf{x})$ is the Jacobian matrix at \mathbf{x} , with $J_{ij} = \frac{\partial F_i}{\partial x_j}$.

Newton's method

Again, consider a Taylor expansion:

$$\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{F}(\mathbf{x}) + \mathbf{J}(\mathbf{x}) \cdot \delta \mathbf{x} + O(\delta \mathbf{x}^2)$$

Here, $J(\mathbf{x})$ is the Jacobian matrix at \mathbf{x} , with $J_{ij} = \frac{\partial F_i}{\partial x_i}$.

Again, Newton's method finds $\delta \mathbf{x}$ by solving $\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = 0$

$$\mathsf{J}(\mathsf{x}) \cdot \delta \mathsf{x} = -\mathsf{F}(\mathsf{x})$$

Solve $\delta \mathbf{x} = -\mathbf{J}(\mathbf{x})^{-1} \cdot \mathbf{F}(\mathbf{x})$ (e.g. by LU decomposition)

Newton's method

Again, consider a Taylor expansion:

$$\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{F}(\mathbf{x}) + \mathbf{J}(\mathbf{x}) \cdot \delta \mathbf{x} + O(\delta \mathbf{x}^2)$$

Here, $J(\mathbf{x})$ is the Jacobian matrix at \mathbf{x} , with $J_{ij} = \frac{\partial F_i}{\partial x_i}$.

Again, Newton's method finds $\delta \mathbf{x}$ by solving $\mathbf{F}(\mathbf{x} + \delta \mathbf{x}) = 0$

$$\mathsf{J}(\mathsf{x}) \cdot \delta \mathsf{x} = -\mathsf{F}(\mathsf{x})$$

Solve $\delta \mathbf{x} = -\mathbf{J}(\mathbf{x})^{-1} \cdot \mathbf{F}(\mathbf{x})$ (e.g. by LU decomposition)

Iterate $\mathbf{x}_{new} = \mathbf{x}_{old} + \delta \mathbf{x}$ until convergence.

Can wildly careen through space if not careful.

Recall, we want to solve $\mathbf{F}(\mathbf{x}) = 0$ $(F_i(\mathbf{x}) = 0, i = 1 \cdots N)$.

Recall, we want to solve $\mathbf{F}(\mathbf{x}) = 0$ $(F_i(\mathbf{x}) = 0, i = 1 \cdots N)$.

Minimize $f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{N} |F_i(\mathbf{x})|^2 = \frac{1}{2} |\mathbf{F}(\mathbf{x})|^2 = \frac{1}{2} \mathbf{F}(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x}).$

Recall, we want to solve $\mathbf{F}(\mathbf{x}) = 0$ $(F_i(\mathbf{x}) = 0, i = 1 \cdots N)$.

Minimize
$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{N} |F_i(\mathbf{x})|^2 = \frac{1}{2} |F(\mathbf{x})|^2 = \frac{1}{2} F(\mathbf{x}) \cdot F(\mathbf{x}).$$

Note: It is NOT sufficient to find a local minimum of f.

GLOBAL METHODS VIA OPTIMIZATION)

We move along $\delta \mathbf{x}$ instead of $\nabla f = \mathbf{F}(\mathbf{x})\mathbf{J}(\mathbf{x})$.

This keeps our global objective in sight.

GLOBAL METHODS VIA OPTIMIZATION)

We move along $\delta \mathbf{x}$ instead of $\nabla f = \mathbf{F}(\mathbf{x})\mathbf{J}(\mathbf{x})$.

This keeps our global objective in sight.

Note: $\nabla f \cdot \delta \mathbf{x} = (\mathbf{F}(\mathbf{x})\mathbf{J}(\mathbf{x})) \cdot (-\mathbf{J}^{-1}(\mathbf{x})\mathbf{F}(\mathbf{x})) = -\mathbf{F}(\mathbf{x})\mathbf{F}(\mathbf{x}) < 0$

GLOBAL AND LOCAL MINIMUM

Find minimum of some function $f : \mathbb{R}^D \to \mathbb{R}$. (maximization is just minimizing -f).

No global information (e.g. only function evaluations, derivatives).

GLOBAL AND LOCAL MINIMUM

Find minimum of some function $f : \mathbb{R}^D \to \mathbb{R}$. (maximization is just minimizing -f).

No global information (e.g. only function evaluations, derivatives).

Finding a global minimum is hard! Usually settle for finding a local minimum (like the EM algorithm).

Conceptually (deceptively?) simpler than EM.

Let *x*_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

Let *x*old be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

 η : sometimes called the 'learning rate' (from neural network literature)

Let *x*_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

 η : sometimes called the 'learning rate' (from neural network literature)

Choosing η is a dark art:

Let *x*_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

 η : sometimes called the 'learning rate' (from neural network literature)

Choosing η is a dark art:

Better methods adapt step-size according to the curvature of *f*.

GRADIENT DESCENT IN HIGHER-DIMENSIONS

Steepest descent also applies to higher dimensions too:

$$x_{new} = x_{old} - \eta \left. \nabla f \right|_{x_{old}}$$

At each step, solve a 1-d problem along the gradient

Now, even the optimal step-size η can be inefficient:

GRADIENT DESCENT IN HIGHER-DIMENSIONS

Steepest descent also applies to higher dimensions too:

$$x_{new} = x_{old} - \eta \left. \nabla f \right|_{x_{old}}$$

At each step, solve a 1-d problem along the gradient

Now, even the optimal step-size η can be inefficient:

GRADIENT DESCENT IN HIGHER-DIMENSIONS

Steepest descent also applies to higher dimensions too:

$$x_{new} = x_{old} - \eta \left. \nabla f \right|_{x_{old}}$$

At each step, solve a 1-d problem along the gradient Now, even the optimal step-size η can be inefficient:

Rather than the best step-size each step, find a decent solution

Big steps with little decrease

Small steps getting us nowhere

Rather than the best step-size each step, find a decent solution

Small steps getting us nowhere

Avg. decrease at least some fraction of initial rate:

$$f(\mathbf{x} + \lambda \delta \mathbf{x}) \leq f(\mathbf{x}) + c_1 \lambda (\nabla f \cdot \delta \mathbf{x}), \qquad c_1 \in (0, 1) \ e.g. \ 0.9$$

Rather than the best step-size each step, find a decent solution

Small steps getting us nowhere

Avg. decrease at least some fraction of initial rate:

$$f(\mathbf{x} + \lambda \delta \mathbf{x}) \leq f(\mathbf{x}) + c_1 \lambda (\nabla f \cdot \delta \mathbf{x}), \quad c_1 \in (0, 1) \ e.g. \ 0.9$$

Final rate is greater than some fraction of initial rate:

 $\nabla f(\mathbf{x} + \lambda \delta \mathbf{x}) \cdot \delta \mathbf{x} \ge c_2 \nabla f(\mathbf{x}) \delta \mathbf{x}, \qquad c_2 \in (0, 1) \text{ e.g. } 0.1 \quad {}^{18/21}$

Permissible λ 's under condition 1

A simple way to satisfy Wolfe conditions:

Set
$$\delta x = -\nabla f$$
, $c_1 = c_2 = .5$

Start with $\lambda = 1$, and while condition *i* is not satisfied, set $\lambda = \beta_i t$ (for $\beta_1 \in (0, 1), \beta_2 > 1$ and $\beta_1 * \beta_2 < 1$

CONJUGATE GRADIENT DESCENT

Consider minimizing $\frac{1}{2}x^TAx - b^Tx$:

Steepest descent can take many steps to get to the minimum Problem: After minimizing along a direction, gradient is perpendicular to previous direction (why)

 \cdot Can 'cancel' out earlier gains

A popular algorithm is conjugate gradient descent Sequentially updates along directions $p_1, \dots p_N$:

$$\begin{aligned} x_{t+1} &= x_t + \lambda_{t+1} p_t, \text{ where } \lambda_{t+1} = \operatorname{argmin}_{\lambda} f(x_t + \lambda p_t) \\ p_{t+1} &= \nabla f(x_{t+1}) + \frac{\langle \nabla f(x_{t+1}, \nabla f(x_{t+1}) \rangle}{\langle \nabla f(x_t, \nabla f(x_t) \rangle} p_t \end{aligned}$$

CONJUGATE GRADIENT DESCENT

Consider minimizing $\frac{1}{2}x^TAx - b^Tx$:

Steepest descent can take many steps to get to the minimum Problem: After minimizing along a direction, gradient is perpendicular to previous direction (why)

 \cdot Can 'cancel' out earlier gains

If $f(x) = \frac{1}{2}x^T A x - b^T x$, $x \in \mathbb{R}^d$, CG takes max d steps to converge

Can show the directions satisfy $\langle p_{t+1}, p_t \rangle_A := p_{t+1}^T A p_t = 0$

(this is unlike $p_{t+1}^T p_t = 0$ for steepest descent)