LECTURE 19: ROOT-FINDING AND

MINIMIZATION
STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao
Purdue University

November 13, 2019

ROOT-FINDING IN ONE-DIMENSION

Given some nonlinear function f: R — R, solve

flx)=0
Invariably need iterative methods.
Assume fis continuous (else things are really messy).

More we know about f (e.g. gradients), better we can do.

Better: faster (asymptotic) convergence.

121

ROOT BRACKETING

f(a) and f(b) have opposite signs — root lies in (a, b).
a and b bracket the root.

Finding an initial bracketing can be non-trivial.
Typically, start with an initial interval and expand or contract.

Below, we assume we have an initial bracketing.

121

ROOT BRACKETING

f(a) and f(b) have opposite signs — root lies in (a, b).

a and b bracket the root.

Finding an initial bracketing can be non-trivial.
Typically, start with an initial interval and expand or contract.

Below, we assume we have an initial bracketing.

Not always possible e.g. f(x) = (x — a)? (in general, multiple
roots/nearby roots lead to trouble).

121

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

e
/

_/

- Current interval = (a,b)
- Set ¢= %P

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

321

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

e
L

_/

- Current interval = (a,b)
- Set ¢= %P

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

321

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

74%
—

- Current interval = (a,b)
- Set ¢= %P

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

321

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

- Current interval = (a,b)
- Set ¢= %P

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

321

BISECTION METHOD (CONTD)

Let e, be the interval length at iteration n.
Upperbounds error in root.

ent1 = 0.5 €p (Linear convergence)

4

BISECTION METHOD (CONTD)

Let e, be the interval length at iteration n.
Upperbounds error in root.

ent1 = 0.5 €p (Linear convergence)

Linear convergence:

- each iteration reduces error by one significant figure.
- every (fixed) k iterations reduces error by one digit.
- error reduced exponentially with the number of iterations.

4

BISECTION METHOD (CONTD)

Let e, be the interval length at iteration n.
Upperbounds error in root.

ent1 = 0.5 €p (Linear convergence)

Linear convergence:

- each iteration reduces error by one significant figure.
- every (fixed) k iterations reduces error by one digit.

- error reduced exponentially with the number of iterations.

Superlinear convergence:
lim Jenya| = Cxlen™ (M >1)

Quadratic convergence:
Number of significant figures doubles every iteration.

4

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

7
<

521

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

Secant method: _/

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

- 618
n'Lngo lént1] = C x [en| ™"

- Bracketing (and thus convergence) not guaranteed.

521

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

Secant method: _/

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

- 618
n'Lngo lént1] = C x [en| ™"

- Bracketing (and thus convergence) not guaranteed.

521

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

Secant method: _/

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

- 618
n'Lngo lént1] = C x [en| ™"

- Bracketing (and thus convergence) not guaranteed.
False position:

- Can choose an old point that guarantees bracketing.
- Convergence analysis is harder.

521

PRACTICAL ROOT-FINDING

In practice, people use more sophiticated algorithms.
Most popular is Brent's method.

Maintains bracketing by combining bisection method with a
quadratic approximation.

Lots of book-keeping.

621

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

721

NEWTON’S METHOD (A.I(.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

Taylor expansion: f(x+9) =f(x) + of (x) + %zf”(x) + -

721

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

Taylor expansion: f(x+9) =f(x) + of (x) + %zf”(x) + -

Assume second- and higher-order terms are negligible.
Given x;, choose xj,1 = X; + 0 so that f(x;;) = O:

721

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

Taylor expansion: f(x+9) =f(x) + of (x) + %zf”(x) + -

Assume second- and higher-order terms are negligible.
Given x;, choose xj,1 = X; + 0 so that f(x;;) = O:

0 = f(x;) + of (x)

Xiy1 = X — f(xi)/f (%)
721

NEWTON’S METHOD (A.I(.A. NEWTON-RAPHSON)

Xiy1 = x;j — f(x)/f (%)

7
_

821

NEWTON’S METHOD (A.I(.A. NEWTON-RAPHSON)

Xiy1 = x;j — f(x)/f (%)

821

NEWTON’S METHOD (A.I(.A. NEWTON-RAPHSON)

Xiy1 = x;j — f(x)/f (%)

821

CONVERGENCE OF NEWTON’S METHOD

Letting x* be the root, we have
Xigr — X" = Xx; — x* — f(x)/f (x)
€iv1 = € — f06)/F (%)

921

CONVERGENCE OF NEWTON’S METHOD

Letting x* be the root, we have
Xip1 = X = X; — X" = f(x;) /f (%))
eip1 = € — f(x)/f (xi)
Also since x; = X* + ¢,
2

F06) ~) + 6 () + 2F'(x")

921

CONVERGENCE OF NEWTON’S METHOD

Letting x* be the root, we have
Xip1 = X = X; — X" = f(x;) /f (%))
eip1 = € — f(x)/f (xi)
Also since x; = X* + ¢,
2

F06) ~) + 6 () + 2F'(x")

This gives

, f'(x)
T TP (%)

™
-

921

CONVERGENCE OF NEWTON’S METHOD

Letting x* be the root, we have
Xip1 = X = X; — X" = f(x;) /f (%))
eip1 = € — f(x)/f (xi)
Also since x; = X* + ¢,
2

F06) ~) + 6 () + 2F'(x")

This gives

o= _f”(x,) 2
T UR(x)

Quadratic convergence (assuming f'(x) is non-zero at the root)

921

PITFALLS OF NEWTON'S METHOD

/

Away from the root the linear approximation can be bad.
Can give crazy results (go off to infinity, cycles etc.)

However, once we have a decent solution can be used to
rapidly ‘polish the root’.

Often used in combination with some bracketing method.
10/21

ROOT-FINDING FOR SYSTEMS OF NONLINEAR EQUATIONS

Now have N functions Fq, F, - -+, Fy of N variables xq, x5, -+ , Xy

Find (xq,- -+ ,Xxy) such that:

F,‘(X1,---,XN):O I=1toN
Much harder than the 1-d case.

Much harder than optimization.

11/21

NEWTON’S METHOD

Again, consider a Taylor expansion:

F(x + 0x) = F(x) +J(X) - x + O(6x%)

_ OF;

Here, J(x) is the Jacobian matrix at x, with J;; = -

1221

NEWTON’S METHOD

Again, consider a Taylor expansion:
F(x + 0x) = F(x) +J(X) - x + O(6x%)

_ OF;

Here, J(x) is the Jacobian matrix at x, with J;; = -

Again, Newton's method finds éx by solving F(x + 6x) = 0
J(x) - 0x = —F(x)

Solve 6x = —J(x)~"- F(x) (e.g. by LU decomposition)

1221

NEWTON’S METHOD

Again, consider a Taylor expansion:
F(x + 0x) = F(x) +J(X) - x + O(6x%)

Here, J(x) is the Jacobian matrix at x, with J;; = g—g.

Again, Newton's method finds éx by solving F(x + 6x) = 0
J(x) - 0x = —F(x)

Solve 6x = —J(x)~"- F(x) (e.g. by LU decomposition)
Iterate Xpew = Xoig + 0% until convergence.

Can wildly careen through space if not careful.
122

Recall, we want to solve F(x) =0 (Fi(x) =0, i=1---N).

1321

GLOBAL METHODS VIA OPTIMIZATION

Recall, we want to solve F(x) =0 (Fi(x) =0, i=1---N).

Minimize f(x) = %ZL‘F:‘(X” 2‘F(X)’2 % (x) - F(x).

1321

GLOBAL METHODS VIA OPTIMIZATION

Recall, we want to solve F(x) =0 (Fi(x) =0, i=1---N).
Minimize f(x) = 3 1L, [Fi(X)? = 3IFOOP = 3F() - F(x).

Note: It is NOT sufficient to find a local minimum of f.

1321

GLOBAL METHODS VIA OPTIMIZATION)
We move along dx instead of Vf = F(x)J(x).

This keeps our global objective in sight.

14/21

GLOBAL METHODS VIA OPTIMIZATION)

We move along dx instead of Vf = F(x)J(x).

This keeps our global objective in sight.

14/21

GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function evaluations,
derivatives).

Local minimum

Global minimum

1521

GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function evaluations,
derivatives).

Local minimum

Global minimum

Finding a global minimum is hard! Usually settle for finding a
local minimum (like the EM algorithm).

Conceptually (deceptively?) simpler than EM. 1521

GRADIENT DESCENT (ITERATIVE METHOD)
Let x,g be our current value.

d
Update Xpew as Xnew = Xold — 1] d—f

Xold

The steeper the slope, the bigger the move.

16/21

GRADIENT DESCENT (ITERATIVE METHOD)

Let x,g be our current value.

d
Update Xpew as Xnew = Xold — 1 &f

Xold

The steeper the slope, the bigger the move.

n: sometimes called the ‘learning rate’
(from neural network literature)

16/21

GRADIENT DESCENT (ITERATIVE METHOD)

Let x,g be our current value.

d
Update Xpew as Xnew = Xold — 1 &f

Xold

The steeper the slope, the bigger the move.

n: sometimes called the ‘learning rate’
(from neural network literature)

Choosing n is a dark art:

f(=) f(z)

16/21

GRADIENT DESCENT (ITERATIVE METHOD)

Let x,g be our current value.

d
Update Xpew as Xnew = Xold — 1 &f

Xold

The steeper the slope, the bigger the move.

n: sometimes called the ‘learning rate’
(from neural network literature)

Choosing n is a dark art:

f(=) f(z)

Better methods adapt step-size according to the curvature of f. -

GRADIENT DESCENT IN HIGHER-DIMENSIONS
Steepest descent also applies to higher dimensions too:
Xnew = Xold — 0 Vfly_,

At each step, solve a 1-d problem along the gradient

Now, even the optimal step-size n can be inefficient:

17/21

GRADIENT DESCENT IN HIGHER-DIMENSIONS
Steepest descent also applies to higher dimensions too:
Xnew = Xold — 0 Vfly_,

At each step, solve a 1-d problem along the gradient

Now, even the optimal step-size n can be inefficient:

1721

GRADIENT DESCENT IN HIGHER-DIMENSIONS

Steepest descent also applies to higher dimensions too:
Xnew = Xold — 1 Vfly_,

At each step, solve a 1-d problem along the gradient

Now, even the optimal step-size n can be inefficient:

7

17/21

WOLFE CONDITIONS

Rather than the best step-size each step, find a decent solution

@) f(z)

Small steps getting us

Big steps with little decrease
nowhere

18/21

WOLFE CONDITIONS

Rather than the best step-size each step, find a decent solution

1) f(z)

Small steps getting us

Big steps with little decrease
nowhere

Avg. decrease at least some fraction of initial rate:

f(xX + Aox) < f(x) + A (Vf - 0x), ¢ €(0,1)e.g. 0.9

18/21

WOLFE CONDITIONS

Rather than the best step-size each step, find a decent solution

1) f(z)

Small steps getting us

Big steps with little decrease
nowhere

Avg. decrease at least some fraction of initial rate:
f(x 4+ Adx) < f(x) + crA\(Vf - 0x), ¢ €(0,1) e.g.0.9
Final rate is greater than some fraction of initial rate:

V(X + Adx) - 0x > ¢ V(X)x, c; €(0,1) e.g. 0.1 182

WOLFE CONDITIONS

F@) +AVS 6z Sy

A

Permissible \’s under condition 1

19/21

WOLFE CONDITIONS

>
>

Permissible A’s under condition 2

19/21

WOLFE CONDITIONS

A simple way to satisfy Wolfe conditions:
Setéx=-Vf,c;=¢c=.5

Start with A = 1, and while condition i is not satisfied, set
A\ = @it (for 81 € (0,1), 5, >1and B+ B2 < 1

20021

CONJUGATE GRADIENT DESCENT

Consider minimizing 3x"Ax — b'x:
\\ Steepest descent can take many
steps to get to the minimum
Problem: After minimizing along a di-
rection, gradient is perpendicular to
previous direction (why)

- Can ‘cancel’ out earlier gains

A\]

A popular algorithm is conjugate gradient descent
Sequentially updates along directions py, - - - py:

Xt41 = Xt + At41Pe, Where A = argminy f(Xe + Apt)

(V(Xt1, VI(Xeq1) D
(Vf(xe, Vi(xe)

Pty1 = Vf(Xep1) +

2121

CONJUGATE GRADIENT DESCENT

Consider minimizing 3x"Ax — b'x:
\\ Steepest descent can take many
steps to get to the minimum
Problem: After minimizing along a di-
rection, gradient is perpendicular to
previous direction (why)

- Can ‘cancel’ out earlier gains

A\ /]

If f(x) = 3x"Ax — bx, x € RY CG takes max d steps to converge
Can show the directions satisfy (py1, pt)a == p{,Apt =0

(this is unlike p[+1pt = 0 for steepest descent)
2121

