LECTURE 18: SOME MCMC PRACTICALITIES

STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao

Purdue University

November 4, 2019

SUMMARY SO FAR...

Independent samples from prob. distrib. p is often difficult.

MCMC addresses this by producing dependent samples.

- Begin with an arbitrary initialization X_0 .
- Sequentially produce samples $X_1 \to X_2 \to \ldots \to X_N$.

If the chain is stationary w.r.t. p(x), irreducible and aperiodic:

$$\frac{1}{S}\sum_{i=1}^{S}h(X_i)\to\mathbb{E}_p[h]$$

SUMMARY SO FAR...

Independent samples from prob. distrib. p is often difficult.

MCMC addresses this by producing dependent samples.

- Begin with an arbitrary initialization X_0 .
- Sequentially produce samples $X_1 \to X_2 \to \ldots \to X_N$.

If the chain is stationary w.r.t. p(x), irreducible and aperiodic:

$$\frac{1}{S}\sum_{i=1}^{S}h(X_i)\to\mathbb{E}_p[h]$$

In practice, S is finite.
Assessing error is much harder

How well does your chain mix?

Are our MCMC samples representative of the overall posterior?

· Difficult with multimodal distributions.

Do we have enough samples to estimate expectations accurately?

- · This is hard with Monte Carlo methods in general
- Trickier with MCMC because of correlation between samples.

RECALL

Burn-in time: time to 'forget' the arbitrary initialization.

Typically deal with burn-in by discarding the first B samples (e.g. B = 1000)

RECALL

Burn-in time: time to 'forget' the arbitrary initialization.

Typically deal with burn-in by discarding the first B samples (e.g. B = 1000)

Sometimes people deal with sample dependence by 'thinning' the Markov chain: E.g. Use every mth sample (e.g. m = 10)

Thinning is usually unnecessary and increases variance of estimates (unless you want to save memory/computation).

RECALL

Burn-in time: time to 'forget' the arbitrary initialization.

Typically deal with burn-in by discarding the first B samples (e.g. B = 1000)

Sometimes people deal with sample dependence by 'thinning' the Markov chain: E.g. Use every mth sample (e.g. m = 10)

Thinning is usually unnecessary and increases variance of estimates (unless you want to save memory/computation).

However, it's worthwhile remembering that *N* MCMC samples correspond to a smaller number of independent samples.

EFFECTIVE SAMPLE SIZE

A Central Limit Theorem for Markov chains tells us

$$\left(\frac{1}{N}\sum_{i=1}^{N}f(X_i)-\mathbb{E}[f(X)]\right)\to\mathcal{N}(0,\sigma^2/N_{ESS})$$

Effective sample size N_{ESS} is a good diagnostic of MCMC mixing

$$N_{ESS} = \frac{N}{1 + 2\sum_{k=1}^{\infty} \rho_k}$$

 ρ_k is the auto-correlation between X_i and X_{i+k} :

$$\rho_k = \frac{\mathbb{E}[(f(X_{i+k}) - \mu)(f(X_i) - \mu)]}{\sigma^2}$$

 (μ, σ^2) are mean and var. of $f(X_i)$ under stationary distribution.

EFFECTIVE SAMPLE SIZE

A Central Limit Theorem for Markov chains tells us

$$\left(\frac{1}{N}\sum_{i=1}^{N}f(X_i)-\mathbb{E}[f(X)]\right)\to\mathcal{N}(0,\sigma^2/N_{ESS})$$

Effective sample size N_{ESS} is a good diagnostic of MCMC mixing

$$N_{ESS} = \frac{N}{1 + 2\sum_{k=1}^{\infty} \rho_k}$$

 ρ_k is the auto-correlation between X_i and X_{i+k} :

$$\rho_k = \frac{\mathbb{E}[(f(X_{i+k}) - \mu)(f(X_i) - \mu)]}{\sigma^2}$$

 (μ, σ^2) are mean and var. of $f(X_i)$ under stationary distribution.

EFFECTIVE SAMPLE SIZE

The Coda package in Rcalculates this and other diagnostics.


```
> effectiveSize(data.frame(half=z[1:1000],full=z))
     half
                full
260.997261
```

Note: always useful to visualize traceplots.

9.216991

Correlation vs lag

> acf <- autocorr(mcmc(z[1:1000]),c(1:25))

Compare 2 non-overlapping parts of the chain (in R CODA is the first 10% and last 50%, and test if their means come from the same distribution.

Can repeat, successively discarding initial parts.

```
> geweke.plot(mcmc(z[1:1000]))
```

> geweke.plot(mcmc(z))

Gelman-Rubin diagnostic: Run $m \ge 2$ independent chains with overdispersed starting points (e.g. sampled from the prior)

· Calculate within-chain variance and between-chain variance.

Gelman-Rubin diagnostic: Run $m \ge 2$ independent chains with overdispersed starting points (e.g. sampled from the prior)

- · Calculate within-chain variance and between-chain variance.
- Former typically underestimates variance (bad mixing), and latter overestimates it (overdispersed initialization).
- · If latter is much larger than former, run chain longer
- > gelman.diag

ONE LONG CHAIN VS MANY SHORTER CHAINS?

M short chain of length N vs 1 chain of length MN:

ONE LONG CHAIN VS MANY SHORTER CHAINS?

M short chain of length N vs 1 chain of length MN:

Pros:

- Diverse initialization likely means better exploration of different modes.
- · Allows easy parallelization

ONE LONG CHAIN VS MANY SHORTER CHAINS?

M short chain of length N vs 1 chain of length MN:

Pros:

- Diverse initialization likely means better exploration of different modes.
- · Allows easy parallelization

Cons:

• Each chain still has a burn-in period *B*. Must discard *MB* samples vs *B* for a single chain.

Never mind mixing, how do we know our sampler is correct?!

After changing something, how do we know it's still correct?

Never mind mixing, how do we know our sampler is correct?!

After changing something, how do we know it's still correct? Can never be sure, but useful to run a few standard tests.

Never mind mixing, how do we know our sampler is correct?!

After changing something, how do we know it's still correct? Can never be sure, but useful to run a few standard tests.

Do your results make sense for special cases?

Never mind mixing, how do we know our sampler is correct?!

After changing something, how do we know it's still correct? Can never be sure, but useful to run a few standard tests.

Do your results make sense for special cases?

Compare different samplers: a Gibbs and MH sampler should give similar results, but unlikely to have same errors.

Never mind mixing, how do we know our sampler is correct?!

After changing something, how do we know it's still correct? Can never be sure, but useful to run a few standard tests.

Do your results make sense for special cases?

Compare different samplers: a Gibbs and MH sampler should give similar results, but unlikely to have same errors.

On scaled down datasets, compare with simple Monte Carlo methods like rejection/importance sampling.

Never mind mixing, how do we know our sampler is correct?!

After changing something, how do we know it's still correct? Can never be sure, but useful to run a few standard tests.

Do your results make sense for special cases?

Compare different samplers: a Gibbs and MH sampler should give similar results, but unlikely to have same errors.

On scaled down datasets, compare with simple Monte Carlo methods like rejection/importance sampling.

Can you analytically calculate the posterior for 1 observation or 2 states or 2 time-periods?

Consider a Markov chain on (x, y, z) with stationary distrib. P(). We obtain samples $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), \dots$

Consider a Markov chain on (x, y, z) with stationary distrib. P(). We obtain samples $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), \dots$

What is $\mathbb{E}[f(x, y, z)]$?

$$\mathbb{E}[f(x,y,z)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i,y_i,z_i)$$

Consider a Markov chain on (x, y, z) with stationary distrib. P(). We obtain samples $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), \dots$

What is $\mathbb{E}[f(x, y, z)]$?

$$\mathbb{E}[f(x,y,z)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i, z_i)$$

What is P(x = 1)?

Consider a Markov chain on (x, y, z) with stationary distrib. P(). We obtain samples $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), \dots$

What is $\mathbb{E}[f(x, y, z)]$?

$$\mathbb{E}[f(x,y,z)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i, z_i)$$

What is P(x = 1)?

$$P(x=1) = \mathbb{E}[\delta(x=1)] \approx \frac{1}{N} \sum_{i=1}^{N} \delta(x_i = 1)$$

Consider a Markov chain on (x, y, z) with stationary distrib. P(). We obtain samples $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), \dots$

What is $\mathbb{E}[f(x, y, z)]$?

$$\mathbb{E}[f(x,y,z)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i, z_i)$$

What is P(x = 1)?

$$P(x = 1) = \mathbb{E}[\delta(x = 1)] \approx \frac{1}{N} \sum_{i=1}^{N} \delta(x_i = 1)$$

Can we do better? E.g. what if x is continuous and we want the density p(x = 1)?

Suppose we can calculate P(x|y,z). This is the case if our Markov chain is a Gibbs sampler.

Suppose we can calculate P(x|y,z).

This is the case if our Markov chain is a Gibbs sampler. Then:

$$P(x = 1) = \int \int P(x = 1, y, z) dydz$$

Suppose we can calculate P(x|y,z).

This is the case if our Markov chain is a Gibbs sampler. Then:

$$P(x = 1) = \int \int P(x = 1, y, z) dydz$$
$$= \int \int P(x = 1|y, z) p(y, z) dydz$$

Suppose we can calculate P(x|y,z).

This is the case if our Markov chain is a Gibbs sampler. Then:

$$P(x = 1) = \int \int P(x = 1, y, z) dydz$$
$$= \int \int P(x = 1|y, z) p(y, z) dydz$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} P(x = 1|y_i, z_i)$$

Suppose we can calculate P(x|y,z).

This is the case if our Markov chain is a Gibbs sampler. Then:

$$P(x = 1) = \int \int P(x = 1, y, z) dydz$$
$$= \int \int P(x = 1|y, z) p(y, z) dydz$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} P(x = 1|y_i, z_i)$$

Typically, this estimate will have lower variance.