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Summary so far…

Independent samples from prob. distrib. p is oǒten difficult.

MCMC addresses this by producing dependent samples.

• Begin with an arbitrary initialization X0.
• Sequentially produce samples X1 → X2 → . . . → XN.

If the chain is stationary w.r.t. p(x), irreducible and aperiodic:

1
S

S∑
i=1

h(Xi) → Ep[h]

In practice, S is finite.
Assessing error is much harder
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How well does your chain mix?

Are our MCMC samples representative of the overall posterior?

• Difficult with multimodal distributions.

Do we have enough samples to estimate expectations
accurately?

• This is hard with Monte Carlo methods in general
• Trickier with MCMC because of correlation between samples.
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Recall

Burn-in time: time to ‘forget’ the arbitrary initialization.

Typically deal with burn-in by discarding the first B samples
(e.g. B = 1000)

Sometimes people deal with sample dependence by ‘thinning’
the Markov chain: E.g. Use every mth sample (e.g. m = 10)

Thinning is usually unnecessary and increases variance of
estimates (unless you want to save memory/computation).

However, it’s worthwhile remembering that N MCMC samples
correspond to a smaller number of independent samples.
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Effective sample size

A Central Limit Theorem for Markov chains tells us(
1
N

N∑
i=1

f(Xi)− E[f(X)]
)

→ N (0, σ2/NESS)

Effective sample size NESS is a good diagnostic of MCMC mixing

NESS =
N

1+ 2
∑∞

k=1 ρk

ρk is the auto-correlation between Xi and Xi+k:

ρk =
E[(f(Xi+k)− µ)(f(Xi)− µ)]

σ2

(µ, σ2) are mean and var. of f(Xi) under stationary distribution.
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Effective sample size

The Coda package in Rcalculates this and other diagnostics.
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> effectiveSize(data.frame(half=z[1:1000],full=z))
half full

260.997261 9.216991

Note: always useful to visualize traceplots.
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Other diagnostics
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> acf <- autocorr(mcmc(z[1:1000]),c(1:25))
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Other diagnostics

Geweke diagnostic:
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Compare 2 non-overlapping parts of the chain (in R CODA is the
first 10% and last 50%, and test if their means come from the
same distribution.
Can repeat, successively discarding initial parts.

> geweke.plot(mcmc(z[1:1000]))
> geweke.plot(mcmc(z)) 7/12



Other diagnostics

Gelman-Rubin diagnostic: Run m ≥ 2 independent chains with
overdispersed starting points (e.g. sampled from the prior)

• Calculate within-chain variance and between-chain variance.

• Former typically underestimates variance (bad mixing), and
latter overestimates it (overdispersed initialization).

• If latter is much larger than former, run chain longer

> gelman.diag
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One long chain vs many shorter chains?

M short chain of length N vs 1 chain of length MN:

Pros:

• Diverse initialization likely means better exploration of
different modes.

• Allows easy parallelization

Cons:

• Each chain still has a burn-in period B. Must discard MB
samples vs B for a single chain.
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Debugging MCMC

Never mind mixing, how do we know our sampler is correct?!

Aǒter changing something, how do we know it’s still correct?

Can never be sure, but useful to run a few standard tests.

Do your results make sense for special cases?

Compare different samplers: a Gibbs and MH sampler should
give similar results, but unlikely to have same errors.

On scaled down datasets, compare with simple Monte Carlo
methods like rejection/importance sampling.

Can you analytically calculate the posterior for 1 observation or
2 states or 2 time-periods?
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Using MCMC samples:

Consider a Markov chain on (x, y, z) with stationary distrib. P().
We obtain samples (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), . . .

What is E[f(x, y, z)]?

E[f(x, y, z)] ≈ 1
N

N∑
i=1

f(xi, yi, zi)

What is P(x = 1)?

P(x = 1) = E[δ(x = 1)] ≈ 1
N

N∑
i=1

δ(xi = 1)

Can we do better? E.g. what if x is continuous and we want the
density p(x = 1)?
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Rao-Blackwellization:

Suppose we can calculate P(x|y, z).
This is the case if our Markov chain is a Gibbs sampler.

Then:

P(x = 1) =
∫ ∫

P(x = 1, y, z)dydz

=

∫ ∫
P(x = 1|y, z)p(y, z)dydz

≈ 1
N

N∑
i=1

P(x = 1|yi, zi)

Typically, this estimate will have lower variance.
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