
lecture 16: markov chain monte carlo
(contd)
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

October 29, 2019

Markov chain Monte Carlo

We are interested in a distribution π(x) = f(x)
Z

(e.g. want the mean, quantiles etc.)

Monte Carlo: approximate with independent samples from π

MCMC: produce dependent samples via a Markov chain

x0 → x1 → x2 → x3 → · · · → xN−1 → xN

Use dependent samples to approximate integrals w.r.t. π(x):

1
N

N∑
i=1

g(xi) ≈ Eπ[g] as

1/21

MCMC

Let T (xi → xi+1) be the Markov transition kernel. We require:

• π is a stationary distribution of T :

π(x) =
∫
X
π(y)T (y→ x)dy

Also require that T be

• irreducible: not stuck to some part of X forever
• aperiodic: not stuck to some part of X for e.g. even
iterations. Can fix this with a ‘lazy’ Markov chain that allows
self-transitions.

Finally, for infinite state-spaces (e.g. the real line), need an
additional condition:

• positive recurrent: revisits every neighborhood infinitely
oǒten

2/21

MCMC

Let T (xi → xi+1) be the Markov transition kernel. We require:

• π is a stationary distribution of T :

π(x) =
∫
X
π(y)T (y→ x)dy

Also require that T be

• irreducible: not stuck to some part of X forever
• aperiodic: not stuck to some part of X for e.g. even
iterations. Can fix this with a ‘lazy’ Markov chain that allows
self-transitions.

Finally, for infinite state-spaces (e.g. the real line), need an
additional condition:

• positive recurrent: revisits every neighborhood infinitely
oǒten

2/21

MCMC

Let T (xi → xi+1) be the Markov transition kernel. We require:

• π is a stationary distribution of T :

π(x) =
∫
X
π(y)T (y→ x)dy

Also require that T be

• irreducible: not stuck to some part of X forever

• aperiodic: not stuck to some part of X for e.g. even
iterations. Can fix this with a ‘lazy’ Markov chain that allows
self-transitions.

Finally, for infinite state-spaces (e.g. the real line), need an
additional condition:

• positive recurrent: revisits every neighborhood infinitely
oǒten

2/21

MCMC

Let T (xi → xi+1) be the Markov transition kernel. We require:

• π is a stationary distribution of T :

π(x) =
∫
X
π(y)T (y→ x)dy

Also require that T be

• irreducible: not stuck to some part of X forever
• aperiodic: not stuck to some part of X for e.g. even
iterations. Can fix this with a ‘lazy’ Markov chain that allows
self-transitions.

Finally, for infinite state-spaces (e.g. the real line), need an
additional condition:

• positive recurrent: revisits every neighborhood infinitely
oǒten

2/21

MCMC

Let T (xi → xi+1) be the Markov transition kernel. We require:

• π is a stationary distribution of T :

π(x) =
∫
X
π(y)T (y→ x)dy

Also require that T be

• irreducible: not stuck to some part of X forever
• aperiodic: not stuck to some part of X for e.g. even
iterations. Can fix this with a ‘lazy’ Markov chain that allows
self-transitions.

Finally, for infinite state-spaces (e.g. the real line), need an
additional condition:

• positive recurrent: revisits every neighborhood infinitely
oǒten 2/21

Ergodicity

With these conditions, our chain is ergodic

For any initialization:

1
N

N∑
i=1

g(xi) → Eπ[g] as N→ ∞ (Ergodicity)

We eventually forget the arbitrary initialization.

Typically, we discard the first B burn-in samples.

A good transition kernel has:

• A short burn-in period.
• Fast mixing (small dependence across samples).

3/21

Ergodicity

With these conditions, our chain is ergodic

For any initialization:

1
N

N∑
i=1

g(xi) → Eπ[g] as N→ ∞ (Ergodicity)

We eventually forget the arbitrary initialization.

Typically, we discard the first B burn-in samples.

A good transition kernel has:

• A short burn-in period.
• Fast mixing (small dependence across samples).

3/21

Ergodicity

With these conditions, our chain is ergodic

For any initialization:

1
N

N∑
i=1

g(xi) → Eπ[g] as N→ ∞ (Ergodicity)

We eventually forget the arbitrary initialization.

Typically, we discard the first B burn-in samples.

A good transition kernel has:

• A short burn-in period.
• Fast mixing (small dependence across samples).

3/21

Markov chain Monte Carlo

The Markov transition kernel T must satisfy

π(xn+1) =
∫
X
π(xn)T (xn+1|xn)dxn

Usually, we enforce the stronger condition of detailed balance:

π(xn+1)T (xn|xn+1) = π(xn)T (xn+1|xn)

(Sufficient but not necessary)

4/21

Markov chain Monte Carlo

The Markov transition kernel T must satisfy

π(xn+1) =
∫
X
π(xn)T (xn+1|xn)dxn

Usually, we enforce the stronger condition of detailed balance:

π(xn+1)T (xn|xn+1) = π(xn)T (xn+1|xn)

(Sufficient but not necessary)

4/21

The problem

Given some probability density π(x) = f(x)/Z:

• How do you construct a transition kernel T with π as it’s
stationary distribution?

• How do you construct a good transition kernel

Focus of a huge literature.

One approach: the Metropolis-Hastings algorithm

5/21

The problem

Given some probability density π(x) = f(x)/Z:

• How do you construct a transition kernel T with π as it’s
stationary distribution?

• How do you construct a good transition kernel

Focus of a huge literature.

One approach: the Metropolis-Hastings algorithm

5/21

The Metropolis-Hastings algorithm

The simplest and most widely applicable MCMC algorithm.
Featured in Dongarra & Sullivan (2000)’s list of top 10
algoirithms.

1. Metropolis Algorithm for Monte Carlo
2. Simplex Method for Linear Programming
3. Krylov Subspace Iteration Methods
4. The Decompositional Approach to Matrix Computations
5. The Fortran Optimizing Compiler
6. QR Algorithm for Computing Eigenvalues
7. Quicksort Algorithm for Sorting
8. Fast Fourier Transform
9. Integer Relation Detection
10. Fast Multipole Method

6/21

The Metropolis-Hastings algorithm

A random walk algorithm

Choose a proposal distrib. q(xnew|xold). E.g. xnew ∼ N (xold, σ2I)

Initialize chain at some starting point x0.

Repeat:

• Propose a new point x∗ according to q(x∗|xn).
• Define α = min

(
1, π(x

∗)q(xn|x∗)
π(xn)q(x∗|xn)

)
= min

(
1, f(x

∗)q(xn|x∗)
f(xn)q(x∗|xn)

)
• Set xn+1 = x∗ with probability α, else xn+1 = xn.

Comments:

• Do not need to calculate the normalization constant Z.
• Accept/reject steps ensure this has the correct distribution.
• On rejection, keep old sample (i.e. there will be repetition)

7/21

The Metropolis-Hastings algorithm

A random walk algorithm

Choose a proposal distrib. q(xnew|xold). E.g. xnew ∼ N (xold, σ2I)

Initialize chain at some starting point x0.

Repeat:

• Propose a new point x∗ according to q(x∗|xn).
• Define α = min

(
1, π(x

∗)q(xn|x∗)
π(xn)q(x∗|xn)

)
= min

(
1, f(x

∗)q(xn|x∗)
f(xn)q(x∗|xn)

)
• Set xn+1 = x∗ with probability α, else xn+1 = xn.

Comments:

• Do not need to calculate the normalization constant Z.
• Accept/reject steps ensure this has the correct distribution.
• On rejection, keep old sample (i.e. there will be repetition)

7/21

The Metropolis-Hastings algorithm

A random walk algorithm

Choose a proposal distrib. q(xnew|xold). E.g. xnew ∼ N (xold, σ2I)

Initialize chain at some starting point x0.

Repeat:

• Propose a new point x∗ according to q(x∗|xn).
• Define α = min

(
1, π(x

∗)q(xn|x∗)
π(xn)q(x∗|xn)

)
= min

(
1, f(x

∗)q(xn|x∗)
f(xn)q(x∗|xn)

)
• Set xn+1 = x∗ with probability α, else xn+1 = xn.

Comments:

• Do not need to calculate the normalization constant Z.
• Accept/reject steps ensure this has the correct distribution.

• On rejection, keep old sample (i.e. there will be repetition)

7/21

The Metropolis-Hastings algorithm

A random walk algorithm

Choose a proposal distrib. q(xnew|xold). E.g. xnew ∼ N (xold, σ2I)

Initialize chain at some starting point x0.

Repeat:

• Propose a new point x∗ according to q(x∗|xn).
• Define α = min

(
1, π(x

∗)q(xn|x∗)
π(xn)q(x∗|xn)

)
= min

(
1, f(x

∗)q(xn|x∗)
f(xn)q(x∗|xn)

)
• Set xn+1 = x∗ with probability α, else xn+1 = xn.

Comments:

• Do not need to calculate the normalization constant Z.
• Accept/reject steps ensure this has the correct distribution.
• On rejection, keep old sample (i.e. there will be repetition)

7/21

The Metropolis-Hastings algorithm

For a symmetric proposal (q(x∗|xn) = q(xn|x∗)):

α = min

(
1, f(x

∗)

f(xn)

)

The Metropolis algorithm.

8/21

The Metropolis-Hastings algorithm

How do we chose the proposal variance?

−2

0

2

−2 0 2
x

y

σ2 = 1 9/21

The Metropolis-Hastings algorithm

How do we chose the proposal variance?

−2

0

2

−2 0 2
x

y

σ2 = .1 9/21

The Metropolis-Hastings algorithm

How do we chose the proposal variance?

−2

0

2

−2 0 2
x

y

σ2 = 5 9/21

Does this satisfy detailed balance?

First, what is the transition kernel T (xn+1|xn)?

Prob. of moving from xn to xn+1 is α(xn+1, xn)q(xn+1|xn).

Prob. of accepting move at xn is α(x) =
∫
X α(y, xn)q(y|xn)dy.

Prob. of rejection at xn is r(xn) = 1− α(xn).

We then have:

T (xn+1|xn) = α(xn+1, xn)q(xn+1|xn) + r(xn)δ(xn = xn+1)

We want to show detailed balance:

π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

10/21

Does this satisfy detailed balance?

First, what is the transition kernel T (xn+1|xn)?

Prob. of moving from xn to xn+1 is α(xn+1, xn)q(xn+1|xn).

Prob. of accepting move at xn is α(x) =
∫
X α(y, xn)q(y|xn)dy.

Prob. of rejection at xn is r(xn) = 1− α(xn).

We then have:

T (xn+1|xn) = α(xn+1, xn)q(xn+1|xn) + r(xn)δ(xn = xn+1)

We want to show detailed balance:

π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

10/21

Does this satisfy detailed balance?

First, what is the transition kernel T (xn+1|xn)?

Prob. of moving from xn to xn+1 is α(xn+1, xn)q(xn+1|xn).

Prob. of accepting move at xn is α(x) =
∫
X α(y, xn)q(y|xn)dy.

Prob. of rejection at xn is r(xn) = 1− α(xn).

We then have:

T (xn+1|xn) = α(xn+1, xn)q(xn+1|xn) + r(xn)δ(xn = xn+1)

We want to show detailed balance:

π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

10/21

Does this satisfy detailed balance?

First, what is the transition kernel T (xn+1|xn)?

Prob. of moving from xn to xn+1 is α(xn+1, xn)q(xn+1|xn).

Prob. of accepting move at xn is α(x) =
∫
X α(y, xn)q(y|xn)dy.

Prob. of rejection at xn is r(xn) = 1− α(xn).

We then have:

T (xn+1|xn) = α(xn+1, xn)q(xn+1|xn) + r(xn)δ(xn = xn+1)

We want to show detailed balance:

π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

10/21

Does this satisfy detailed balance?

First, what is the transition kernel T (xn+1|xn)?

Prob. of moving from xn to xn+1 is α(xn+1, xn)q(xn+1|xn).

Prob. of accepting move at xn is α(x) =
∫
X α(y, xn)q(y|xn)dy.

Prob. of rejection at xn is r(xn) = 1− α(xn).

We then have:

T (xn+1|xn) = α(xn+1, xn)q(xn+1|xn) + r(xn)δ(xn = xn+1)

We want to show detailed balance:

π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

10/21

Does this satisfy detailed balance?

First, what is the transition kernel T (xn+1|xn)?

Prob. of moving from xn to xn+1 is α(xn+1, xn)q(xn+1|xn).

Prob. of accepting move at xn is α(x) =
∫
X α(y, xn)q(y|xn)dy.

Prob. of rejection at xn is r(xn) = 1− α(xn).

We then have:

T (xn+1|xn) = α(xn+1, xn)q(xn+1|xn) + r(xn)δ(xn = xn+1)

We want to show detailed balance:

π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

10/21

The Metropolis-Hastings algorithm

Detailed balance: π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

Consider the LHS:

π(xn)T (xn+1|xn) = π(xn) (α(xn+1, xn)q(xn+1, xn) + r(xn)δ(xn = xn+1))

The first term is: f(xn)
Z min

(
1, f(xn+1)q(xn|xn+1)f(xn)q(xn+1|xn)

)
q(xn+1|xn)

=
1
Z min (f(xn)q(xn+1|xn), f(xn+1)q(xn|xn+1))

First term of RHS has this form too.

For the second term, r(xn)δ(xn = xn+1) = r(xn+1)δ(xn+1 = xn)

Thus, π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

11/21

The Metropolis-Hastings algorithm

Detailed balance: π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

Consider the LHS:

π(xn)T (xn+1|xn) = π(xn) (α(xn+1, xn)q(xn+1, xn) + r(xn)δ(xn = xn+1))

The first term is: f(xn)
Z min

(
1, f(xn+1)q(xn|xn+1)f(xn)q(xn+1|xn)

)
q(xn+1|xn)

=
1
Z min (f(xn)q(xn+1|xn), f(xn+1)q(xn|xn+1))

First term of RHS has this form too.

For the second term, r(xn)δ(xn = xn+1) = r(xn+1)δ(xn+1 = xn)

Thus, π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

11/21

The Metropolis-Hastings algorithm

Detailed balance: π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

Consider the LHS:

π(xn)T (xn+1|xn) = π(xn) (α(xn+1, xn)q(xn+1, xn) + r(xn)δ(xn = xn+1))

The first term is: f(xn)
Z min

(
1, f(xn+1)q(xn|xn+1)f(xn)q(xn+1|xn)

)
q(xn+1|xn)

=
1
Z min (f(xn)q(xn+1|xn), f(xn+1)q(xn|xn+1))

First term of RHS has this form too.

For the second term, r(xn)δ(xn = xn+1) = r(xn+1)δ(xn+1 = xn)

Thus, π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

11/21

The Metropolis-Hastings algorithm

Detailed balance: π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

Consider the LHS:

π(xn)T (xn+1|xn) = π(xn) (α(xn+1, xn)q(xn+1, xn) + r(xn)δ(xn = xn+1))

The first term is: f(xn)
Z min

(
1, f(xn+1)q(xn|xn+1)f(xn)q(xn+1|xn)

)
q(xn+1|xn)

=
1
Z min (f(xn)q(xn+1|xn), f(xn+1)q(xn|xn+1))

First term of RHS has this form too.

For the second term, r(xn)δ(xn = xn+1) = r(xn+1)δ(xn+1 = xn)

Thus, π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

11/21

The Metropolis-Hastings algorithm

Detailed balance: π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

Consider the LHS:

π(xn)T (xn+1|xn) = π(xn) (α(xn+1, xn)q(xn+1, xn) + r(xn)δ(xn = xn+1))

The first term is: f(xn)
Z min

(
1, f(xn+1)q(xn|xn+1)f(xn)q(xn+1|xn)

)
q(xn+1|xn)

=
1
Z min (f(xn)q(xn+1|xn), f(xn+1)q(xn|xn+1))

First term of RHS has this form too.

For the second term, r(xn)δ(xn = xn+1) = r(xn+1)δ(xn+1 = xn)

Thus, π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

11/21

The Metropolis-Hastings algorithm

Detailed balance: π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)

Consider the LHS:

π(xn)T (xn+1|xn) = π(xn) (α(xn+1, xn)q(xn+1, xn) + r(xn)δ(xn = xn+1))

The first term is: f(xn)
Z min

(
1, f(xn+1)q(xn|xn+1)f(xn)q(xn+1|xn)

)
q(xn+1|xn)

=
1
Z min (f(xn)q(xn+1|xn), f(xn+1)q(xn|xn+1))

First term of RHS has this form too.

For the second term, r(xn)δ(xn = xn+1) = r(xn+1)δ(xn+1 = xn)

Thus, π(xn)T (xn+1|xn) = π(xn+1)T (xn|xn+1)
11/21

Gibbs sampling

Consider a Markov chain over a set of variables (x1, · · · , xd).

Gibbs sampling cycles though these sequentially (or randomly).
At the ith step, it updates xi conditioned on the the rest:

xi ∼ π(xi|x1, . . . , xi−1, xi+1, . . . , xn) = π(xi|x\i)

Oǒten these conditionals have a much simpler form than the
joint.

12/21

Gibbs sampling

−2

0

2

−2 0 2
x

y

13/21

Detailed balance for the sequential Gibbs sampler

Does it satisfy stationarity?

Does it satisfy irreducibility?

Is it aperiodic?

14/21

Detailed balance for the randomized Gibbs sampler

Suppose we update component i with prob. ρi. Let x and x′
differ only in component i. Then:

T (x′|x) = ρiπ(x′i|x\i)

Also

π(x)T (x′|x) = π(x)ρiπ(x′i|x\i)
= π(x\i)π(xi|x\i)ρiπ(x′i|x\i)

From symmetry (or by calculating RHS), we have detailed
balance.

15/21

Detailed balance for Gibbs sampler

Under mild conditions, Gibbs sampling is irreducible.

Can break down under constraints. E.g. two perfectly couple
variables.
Performance deteriorates with strong coupling between
variables.
Poor mixing due to coupled variables is always a concern.

Advantages: Simple, with no free parameters.
Oǒten, conditional independencies in a model along with
suitable conjugate priors allow efficient ‘blocked-Gibbs
samplers’.

16/21

Detailed balance for Gibbs sampler

Under mild conditions, Gibbs sampling is irreducible.
Can break down under constraints. E.g. two perfectly couple
variables.
Performance deteriorates with strong coupling between
variables.
Poor mixing due to coupled variables is always a concern.

Advantages: Simple, with no free parameters.
Oǒten, conditional independencies in a model along with
suitable conjugate priors allow efficient ‘blocked-Gibbs
samplers’.

16/21

Detailed balance for Gibbs sampler

Under mild conditions, Gibbs sampling is irreducible.
Can break down under constraints. E.g. two perfectly couple
variables.
Performance deteriorates with strong coupling between
variables.
Poor mixing due to coupled variables is always a concern.

Advantages: Simple, with no free parameters.

Oǒten, conditional independencies in a model along with
suitable conjugate priors allow efficient ‘blocked-Gibbs
samplers’.

16/21

Detailed balance for Gibbs sampler

Under mild conditions, Gibbs sampling is irreducible.
Can break down under constraints. E.g. two perfectly couple
variables.
Performance deteriorates with strong coupling between
variables.
Poor mixing due to coupled variables is always a concern.

Advantages: Simple, with no free parameters.
Oǒten, conditional independencies in a model along with
suitable conjugate priors allow efficient ‘blocked-Gibbs
samplers’.

16/21

Gibbs sampling

More generally, Gibbs sampling can update more than one
component at each step.

E.g. consider a Markov chain over 5 variables (x1, x2, x3, x4, x5).

Alternately updating x1, x2|x3, x4, x5, and then x3, x4, x5|x1, x2
form a correct Gibbs sampler

• If simulating these conditionals is easy, this can be more
efficient than naively sampling one component at a time.

Can also have overlaps: e.g. update x1, x2, x3|x5, and then
x3, x4, x5|x1, x2 form a correct Gibbs sampler

Convince yourself this is correct

17/21

Gibbs sampling

More generally, Gibbs sampling can update more than one
component at each step.

E.g. consider a Markov chain over 5 variables (x1, x2, x3, x4, x5).

Alternately updating x1, x2|x3, x4, x5, and then x3, x4, x5|x1, x2
form a correct Gibbs sampler

• If simulating these conditionals is easy, this can be more
efficient than naively sampling one component at a time.

Can also have overlaps: e.g. update x1, x2, x3|x5, and then
x3, x4, x5|x1, x2 form a correct Gibbs sampler

Convince yourself this is correct

17/21

Back to the Mixture of Gaussians (MoG)

Observations come from one of K components

• each component is a Gaussian
• Component c has parameters θc = (µc,Σc), its mean and
covariance

To generate the ith observation:

ci ∼ π Sample it’s cluster assignment
xi ∼ N (xi|µci ,Σci) Sample it’s value

Given data X, how did we estimate the parameters π, {µc,Σc}?

What does a Bayesian approach involve?

18/21

Back to the Mixture of Gaussians (MoG)

Observations come from one of K components

• each component is a Gaussian
• Component c has parameters θc = (µc,Σc), its mean and
covariance

To generate the ith observation:

ci ∼ π Sample it’s cluster assignment
xi ∼ N (xi|µci ,Σci) Sample it’s value

Given data X, how did we estimate the parameters π, {µc,Σc}?

What does a Bayesian approach involve?

18/21

Back to the Mixture of Gaussians (MoG)

Observations come from one of K components

• each component is a Gaussian
• Component c has parameters θc = (µc,Σc), its mean and
covariance

To generate the ith observation:

ci ∼ π Sample it’s cluster assignment
xi ∼ N (xi|µci ,Σci) Sample it’s value

Given data X, how did we estimate the parameters π, {µc,Σc}?

What does a Bayesian approach involve?

18/21

Bayesian inference for MoG

Place a prior over π: conjugate is a Dirichlet prior

Place a prior over the cluster parameters θc = (µc,Σc):
conjugate is the normal inverse-Wishart distribution.

Given data X = {x1, · · · , xN}, we want to sample from the
distribution p(π, {µc,Σc}Kc=1|X)

19/21

Bayesian inference for MoG

Place a prior over π: conjugate is a Dirichlet prior

Place a prior over the cluster parameters θc = (µc,Σc):
conjugate is the normal inverse-Wishart distribution.

Given data X = {x1, · · · , xN}, we want to sample from the
distribution p(π, {µc,Σc}Kc=1|X)

19/21

Bayesian inference for MoG (contd.)

We will sample from the distribution p(C, π, {µc,Σc}Kc=1|X),
including the cluster assignments C = {c1, · · · , cN}.

We do this by Gibbs sampling

How do we do this?

20/21

Bayesian inference for MoG (contd.)

We will sample from the distribution p(C, π, {µc,Σc}Kc=1|X),
including the cluster assignments C = {c1, · · · , cN}.

We do this by Gibbs sampling

How do we do this?

20/21

Gibbs sampling for MoG

Initialize MCMC chain, by randomly assigning observations to
one of the K clusters.

Then, repeat:

1) Given cluster assignments C, sample π and {µc,Σc}

• These are simple conjugate distributions (think about this
and HW 5)

2) Given parameters, sample cluster assignments C.

• We did this for the case of the EM algorithm: just simulate
from the cluster ”responsibilities”

21/21

Gibbs sampling for MoG

Initialize MCMC chain, by randomly assigning observations to
one of the K clusters.

Then, repeat:

1) Given cluster assignments C, sample π and {µc,Σc}

• These are simple conjugate distributions (think about this
and HW 5)

2) Given parameters, sample cluster assignments C.

• We did this for the case of the EM algorithm: just simulate
from the cluster ”responsibilities”

21/21

