LECTURE 4: COMPLEXITY, DATA-STRUCTURES AND SORTING
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

August 29, 2018
Let x and y be $N \times 1$ vectors

Let A and B be $N \times N$ and $N \times M$ matrices

How many additions and multiplications to calculate:

- $x^T y$
- Ax
- AB
- A^{-1}
The big-O notation provides an asymptotic upper bound:

$$O(g(N)) = \{ f : \exists c, N_0 > 0 \text{ s.t. } f(N) \leq cg(N) \ \forall N > N_0 \}$$
The big-O notation provides an asymptotic upper bound:

$$O(g(N)) = \{f : \exists c, N_0 > 0 \text{ s.t. } f(N) \leq cg(N) \ \forall N > N_0\}$$

$$2N^3 \in O(N^3)$$
$$N^2 \in O(N^3)$$
$$N^3 + N^2 \in O(N^3)$$
$$N^3 + \exp(N) \not\in O(N^3)$$
The big-O notation provides an asymptotic upper bound:

\[O(g(N)) = \{ f : \exists c, N_0 > 0 \text{ s.t. } f(N) \leq cg(N) \forall N > N_0 \} \]

\[2N^3 \in O(N^3) \]
\[N^2 \in O(N^3) \]
\[N^3 + N^2 \in O(N^3) \]
\[N^3 + \exp(N) \not\in O(N^3) \]

So is matrix multiplication \(O(N^3) \)? Yes, but: it's also \(O(N^{2.38}) \)!
The big-O notation provides an asymptotic upper bound:

$$O(g(N)) = \{f : \exists c, N_0 > 0 \text{ s.t. } f(N) \leq cg(N) \forall N > N_0\}$$

$$2N^3 \in O(N^3)$$
$$N^2 \in O(N^3)$$
$$N^3 + N^2 \in O(N^3)$$
$$N^3 + \exp(N) \not\in O(N^3)$$

So is matrix multiplication $O(N^3)$? Yes, but: it’s also $O(N^{2.38})$!

Conjecture: matrix multiplication is actually $O(N^2)$.
Consider a set of N numbers. We want to sort them in decreasing order. What is the complexity?

Naïve algorithm:

- Find smallest number. Cost? $O(N)$
- Find next smallest number. Cost? $O(N)$
- ...

Overall cost? $O(N^2)$

Can we do better?
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
Priority queue

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.
A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

Sorting, clustering, discrete-event simulation, queuing systems
How do we implement this?
Naive approach 1: an unsorted array:

\((3, 1, 4, 2, 6, 8, 3)\)
Naive approach 1: an unsorted array:

\((3, 1, 4, 2, 6, 8, 3)\)

What is the cost of Insert? \(O(1)\)

What is the cost of FindMax? \(O(N)\)

What is the cost of RemoveMax (assume we’ve already found the maximum)? \(O(1)\)
Naive approach 2: a sorted array:

\[(1, 2, 3, 3, 4, 6, 8)\]
Naive approach 2: a sorted array:

\[(1, 2, 3, 3, 4, 6, 8)\]

- Cost of FindMax? \(O(1)\)
- Cost of RemoveMax? \(O(1)\)
- Cost of Insert.FindPosition? \(O(\log(N))\) (binary search)
- Cost of Insert.Insert? \(O(N)\)
Naive approach 3: a sorted doubly linked-list:

What is the cost of \texttt{FindMax}?
$O(1)$

What is the cost of \texttt{RemoveMax}?
$O(1)$

What is the cost of \texttt{Insert}?
$O(N)$

Each approach solves one problem, but makes another operation N. Can we do better?
Naive approach 3: a sorted doubly linked-list:

What is the cost of \textit{FindMax}? $O(1)$
What is the cost of \textit{RemoveMax}? $O(1)$
What is the cost of \textit{Insert}? $O(N)$
Naive approach 3: a sorted doubly linked-list:

What is the cost of \texttt{FindMax}? $O(1)$
What is the cost of \texttt{RemoveMax}? $O(1)$
What is the cost of \texttt{Insert}? $O(N)$
Each approach solves one problem, but makes another operation N. Can we do better?
We need a more complicated data-structure: a Heap.

For a precise definition, see: http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
HEAPS

For a precise definition, see: http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
HEAPS: Insert

```
Heaps:
Insert
2 2 4 1 1 3 7 8
9 = 15
```
Heaps: Insert

Insert(9)
HEAPS: Insert

Insert(9)
HEAPS: Insert

Insert(9)
HEAPS: Insert

Insert(9)
HEAPS: Insert

2 1 1 3 7 2 4 8 9

\[
\text{9} \\
\text{8} \quad \text{1} \quad \text{1} \quad \text{3} \\
\text{4} \quad \text{2} \quad \text{2} \\
\text{2} \\
\text{7} \\
\text{1} \quad \text{1} \quad \text{3}
\]
HEAPS: Insert

Cost? $O(\log(N))$
HEAPS: RemoveMax

RemoveMax
HEAPS: RemoveMax

RemoveMax

2

4

8

1

1

7

3

2
HEAPS: RemoveMax

Swap with larger child
HEAPS: RemoveMax

RemoveMax
HEAPS: RemoveMax

Cost? $O(\log(N))$

```
2 4 7 8
1 1 3
2
```
Consider a set of N numbers. Want to sort in decreasing order.

Grow a priority queue, sequentially adding elements

• Cost of each step? $O(\log(N))$
• Overall cost? $O(N \log(N))$

Sequentially remove the maximum element

• Cost of each step? $O(\log(N))$
• Overall cost? $O(N \log(N))$

Cost of overall algorithm? $O(N \log(N))$
See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half
See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

![Array elements with pivot highlighted](image)

- Pivot: #7
- Start: #1
- End: #6
See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

\[
\begin{array}{cccccccc}
4 & 3 & 2 & 1 & 5 & 9 & 7 \\
\end{array}
\]

- Pivot: #1
- Start: #2
- End: #6
See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

Pivot: #1
Start: #2
End: #6
Quicksort

See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

3 4 2 1 5 9 7

- Pivot: #2
- Start: #3
- End: #6
Quicksort

See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

```
3 2 4 1 5 9 7
```

- Pivot: #3
- Start: #4
- End: #6
Quicksort

See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

3 2 1 4 5 9 7

Recurse for each half
Quicksort

See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

```plaintext
3 2 1 4 5 9 7
```

Recurse for each half
See http://me.dt.in.th/page/Quicksort/ for a nicer display

• Choose a pivot
• Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
• Recurse for each half

Recurse for each half
Quicksort

See http://me.dt.in.th/page/Quicksort/ for a nicer display

- Choose a pivot
- Ensure all elements to left of pivot are less than/equal, and all to right are greater than the pivot
- Recurse for each half

At the end, we have a sorted list
Analysis of quicksort

Analysis is a bit harder

What is the worst-case runtime?
What is the best-case runtime?

Average run-time is $\Theta(n \log n)$

Average with respect to what?

Randomized algorithms
Class **P**: Problems of polynomial complexity. Let $T(n)$ be running-time for input size n. Then there is a k such that:

$$T(n) = O(n^k)$$

Class **E**: Problems of exponential complexity.

$$T(n) = \exp(O(n))$$

Class **NP**: Problems of where proposed solution can be verified in polynomial time. E.g. graph isomorphism

Class **NP**-hard: at least as hard as the hardest problems in **NP** (halting problem)

Class **NP**-complete: Hardest problems in **NP** (i.e. problems in both **NP** and **NP**-hard). E.g. travelling salesman.
A million dollar question (literally)

Figure: from Wikipedia