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Chapter 1

Dirichlet process mixtures and

nonparametric Bayesian approaches

to clustering

Vinayak Rao

Department of Statistics,

Purdue University

Abstract

Interest in nonparametric Bayesian methods has grown rapidly as statisticians and machine learning researchers

work with increasingly complex datasets, and as computation grows faster and cheaper. Central to developments in

this field has been the Dirichlet process. In this chapter, we introduce the Dirichlet process, and review its

properties and its different representations. We describe the Dirichlet process mixture model that is fundamental to

clustering problems and review some of its applications. We discuss various approaches to posterior inference, and

conclude with a short review of extensions beyond the Dirichlet process.
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2 CHAPTER 1. DIRICHLET PROCESSES

1.1 Introduction

The Bayesian framework provides an elegant model-based approach to bringing prior infor-

mation to statistical problems, as well as a simple calculus for inference. Prior beliefs are

represented by probabilistic models of data, often structured by incorporating latent vari-

ables. Given a prior distribution and observations, the laws of probability (in particular,

Bayes’ rule) can be used to calculate posterior distributions over unobserved quantities, and

thus to update beliefs about future observations. This provides a conceptually simple ap-

proach to handling uncertainty, dealing with missing data, and combining information from

different sources. A well known issue is that complex models usually result in posterior

distributions that are intractable to exact analysis; however the availability of cheap compu-

tation, coupled with the development of sophisticated Markov chain Monte Carlo sampling

methods and deterministic approximation algorithms has resulted in a wide application of

Bayesian methods. The field of clustering is no exception, see for example [13, 39], and the

references therein.

There still remain a number of areas of active research, and in this chapter, we consider the

problem of model selection. For clustering, model selection in its simplest form boils down

to choosing the number of clusters underlying a dataset. Conceptually at least, the Bayesian

approach can handle this easily by mixing over different models with different numbers of

clusters. An additional latent variable now identifies which of the smaller submodels actually

generated the data, and a prior belief on model complexity is specified by a probability

distribution over this variable. Given observations, Bayes’ rule can be used to update the

posterior distribution over models.

However, with the increasing application of Bayesian models to complex datasets from

fields like biostatistics, computer vision and natural language processing, modelling data

as a realization of one of a set of finite-complexity parametric models is inadequate. Such

datasets raise the need for prior distributions that capture the notion of a world of unbounded

complexity, so that a priori, one expects larger datasets to require more complicated expla-

nations (e.g. larger numbers of clusters). A mixture of finite cluster models does not really

capture this idea. A realization of such a model would first sample the number of clusters,
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and this would remain fixed no matter how many observations are produced subsequently.

Under a truly nonparametric solution, the number of clusters would be infinite, with any

finite dataset ‘uncovering’ only a finite number of active clusters. As more observations are

generated, one would expect more and more clusters to become active. The Bayesian ap-

proach of maintaining full posterior distributions (rather than fitting point estimates) allows

the use of such an approach without concerns about overfitting. Such a solution is also more

elegant and principled than the empirical Bayes approach of adjusting the prior over the

number of clusters after seeing the data [8].

The Dirichlet process (DP), introduced by Ferguson in [12], is the most popular example

of a nonparametric prior for clustering. Ferguson introduced the DP in a slightly different

context, as a probability measure on the space of probability distributions. He noted two

desiderata for such a nonparametric prior: the need for the prior to have large support on

the space of probability distributions, and the need for the resulting posterior distribution

to be tractable. Ferguson described these two properties as antagonistic, and the Dirichlet

process reconciles them at the cost of a peculiar property: a probability measure sampled

from a DP is discrete almost surely (see Figure 1.1). While there has since been considerable

work on constructing priors without this limitation, the discreteness of the DP was seized

upon as ideal for clustering appications, providing a prior over mixing proportions in models

with an infinite number of components.

The next section defines the DP, and introduces various representations useful in applica-

tions and for studying its properties. We introduce the DP mixture model that is typically

used in clustering applications, and in Section 1.3, describe some applications. We follow

that with a description of various approaches to posterior inference (Section 1.4), and end

by outlining some approaches to extending the DP.

1.2 The Dirichlet Process

Consider a positive real number α, as well as a probability measure G0 on some space Θ. For

instance, Θ could be the real line, and G0 could be the normal distribution with mean 0 and
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variance σ2. A Dirichlet process, parametrized by G0 and α, is written as DP(α,G0), and is

a stochastic process whose realizations (which we call G) are probability measures on Θ. G0

is called the base measure, while α is called the concentration parameter. Often, the DP is

parametrized by a single finite measure α(·), in which case, α = α(Θ) and G0(·) = α(·)/α(Θ).

We will adopt the former convention.

Observe that for any probability measure G, and for any finite partition (A1, . . . , An) of Θ,

the vector (G(A1), . . . G(An)) is a probability vector, i.e., it is a point on the (n−1)-simplex,

with nonnegative components that add up to one. We call this vector the projection of G

onto the partition. Then the Dirichlet process is defined as follows: for any finite partition

of Θ, the projected probability vector has a Dirichlet distribution as specified below:

(G(A1), . . . G(An)) ∼ Dirichlet(αG0(A1), . . . , αG0(An)) (1.1)

In words, the marginal distribution induced by projecting the Dirichlet process onto a finite

partition is an appropriately parametrized Dirichlet distribution (in particular, the parameter

vector of the Dirichlet distribution is the projection of the base measureG0 onto the partition,

multiplied by α). A technical question now arises: does there exist a stochastic process whose

projections simultaneously satisfy this condition for all finite partitions of Θ? To answer this,

note that equation (1.1) and the properties of the Dirichlet distribution imply

(G(A1), . . . , G(Ai)+G(Ai+1), . . . G(An)) ∼

Dirichlet(αG0(A1), . . . , αG0(Ai) + αG0(Ai+1), . . . , αG0(An)) (1.2)

This distribution of the projection on the coarsened partition (A1, . . . , Ai ∪ Ai+1, . . . An),

implied indirectly via the distribution on the finer partition (A1, . . . , Ai, Ai+1, . . . An) agrees

with the distribution that follows directly from the definition of the DP. This consistency is

sufficient to imply the existence of the DP via Kolmogorov’s consistency theorem1[22].

We shall see a more constructive definition of the DP in Section 1.2.2, however there are

a number of properties that follow from this definition of the DP. First, note that from the

1While Kolmogorov’s consistency theorem guarantees the existence of a stochastic process with specified finite marginals,
a subtle issue concerns whether realizations of this stochastic process are probability measures. This actually requires mild
additional assumptions on the space Θ, see e.g. [14] or [33] for more detailed accounts of this.
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properties of the Dirichlet distribution, for any set A, E[G(A)] = G0(A). This being true

for all sets A, we have that the mean of a draw from a DP is the base probability measure

G0. On the other hand, var[G(A)] = G0(A)(1−G0(A))
1+α

, so that α controls how concentrated

probability mass is around the mean G0. As α → ∞, G(A) → G0(A) for all A, so that a

draw from the DP equals the base measure G0. We will see in Section 1.2.2 that as α tends

to 0, G approaches a single Dirac measure, whose location is drawn from G0.

To appreciate why the DP has large support on the space of probability distributions,

observe that any probability measure can be approximated arbitrarily well as a piecewise-

constant probability measure on a sufficiently fine, finite partition of Θ. Assuming the

partition has m components, and calling the probability vector p ≡ (p1, . . . , pm), note that

p lies in the support of an m-dimensional Dirichlet distribution Dirichlet(γ1, . . . , γm) only if

for all i such that pi > 0, we have γi > 0. When Dirichlet(γ1, . . . , γm) is the projection of DP

with base measure G0, this is always true if the support of G0 includes all of Θ (e.g. when Θ

is Rn, and G0 is a multivariate normal on Θ: here, for any open set Ai, γi =
∫
Ai
G0(dx) > 0).

In this case, the support2 of the DP includes all probability meaures on Θ. More generally,

the weak support of DP(α,G0) includes all probability measures whose support is included

in the support of G0. Somewhat confusingly, in spite of this large support, we will see that

any probability measure sampled from a DP is discrete almost surely.

We next characterize the DP posterior by considering the following hierarchical model:

G ∼ DP(α,G0) (1.3)

θi ∼ G for i in 1 to N (1.4)

Thus, we sample N observations independently from the random probability measure G

(itself drawn from a DP). Let NA represent the number of elements of the sequence θ ≡
(θ1, . . . , θN) lying in a set A, i.e. NA =

∑N
i=1 δA(θi), where δA(·) is the indicator function

for the set A. For some partition (A1, . . . , Am), the vector of counts (NA1 , . . . , NAm) is

multinomially distributed with a Dirichlet prior on the probability vector (equation (1.1)).

2weak support, to be precise.
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From the conjugacy of the Dirichlet distribution, we have the posterior distribution

(G(A1), . . . G(Am))|(θ1, . . . , θN) ∼ Dirichlet(αG0(A1) +NA1 , . . . , αG0(Am) +NAm) (1.5)

This must be true for any partition of Θ, so that the posterior is a stochastic process, all of

whose marginals are Dirichlet distributed. It follows that the posterior is again a DP, now

with concentration parameter α +N , and base measure
(

α
α+N

G0 + 1
α+N

∑N
i=1 δθi

)
:

G|(θ1, . . . , θN) ∼ DP

(
α +N,

α

α +N
G0 +

1

α +N

N∑
i=1

δθi

)
(1.6)

This is the conjugacy property of the DP. The fact that the posterior is again a DP allows

one to integrate out the infinite-dimensional random measure G, obtaining a remarkable

characterization of the marginal distribution over observations. We discuss this next.

1.2.1 The Pólya urn scheme and the Chinese restaurant process

Consider a single observation θ drawn from the DP-distributed probability measure G. The

definition of the DP in the previous section shows that the probability that θ lies in a set A,

marginalizing out G(A), is just E[G(A)] = G0(A). Since this is true for all A, it follows that

θ ∼ G0. Since the posterior given N observations is also DP-distributed (equation (1.6)),

the predictive distribution of observation N + 1 is just the posterior base measure:

θN+1|θ1, . . . , θN ∼
1

α +N

(
αG0(·) +

N∑
i=1

δθi(·)

)
(1.7)

We see that the predictive distribution of a new observation is a mixture of the DP base

measure G0 (weighted by the concentration parameter), and the empirical distribution of the

previous observations (weighted by the number of observations). The result above allows us

to sequentially generate observations from a DP-distributed random probability measure

G, without having to explicitly represent the the infinite-dimensional variable G. This

corresponds to a sequential process knows as a Pólya urn scheme [3]. Here, at stage N ,
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we have an urn containing N balls, the ith ‘coloured’ with the associated value θi. With

probability α/(α + N), the (N + 1)st ball is assigned a colour θN+1 drawn independently

from the base measure G0, after which it is added to the urn. Otherwise, we uniformly pick a

ball from the urn, and set θN+1 equal to its colour, and return both balls to the urn. Observe

that there is non-zero probability that multiple balls have the same colour, and that the

more balls share a particular colour, the more likely a new ball will be assigned that colour.

This rich-get-richer scheme is key to the clustering properties of the DP.

Let θ∗ ≡ (θ∗1, . . . , θ
∗
KN

) be the sequence of unique values in θ, KN being the number of

such values. Let πNi index the elements of θ that equal θ∗i , and let πN = {πN1 , . . . , πNKN
}.

Clearly, (θ∗, πN) is an equivalent representation of θ. πN is a partition of the integers 1 to

N , while θ∗ represents the parameter assigned to each element of the partition. Define ni

as the size of the ith cluster, so that ni = |πNi |. Equation (1.7) can now be rewritten as

θN+1 ∼
1

α +N

(
αG0 +

KN∑
c=1

ncδθ∗c

)
(1.8)

The preceding equation is characterized by a different metaphor called the Chinese restaurant

process (CRP) [35], one that is slightly more relevant to clustering applications. Here, a

partition of N observations is represented by the seating arrangement of N ‘customers’ in

a ‘restaurant’. All customers seated at a table form a cluster, and the dish served at that

table corresponds to its associated parameter, θ∗. When a new customer (observation N+1)

enters the restaurant, with probability proportional to α, she decides to sit by herself at a

new table, ordering a dish drawn from G0. Otherwise, she joins one of the existing KN tables

with probability proportional to the number of customers seated there. We can write down

the marginal distribution over the observations (θ1, . . . , θn):

P (π,θ∗) =

(
αKN−1

[α + 1]N1

KN∏
c=1

(nc − 1)!

)(
KN∏
c=1

G0(θ∗c )

)
(1.9)

Here, [x]na =
∏n−1

i=0 (x+ ia) is the rising factorial. The equation above makes it clear that the

partitioning of observations into clusters, and the assignment of parameters to each cluster

are independent processes. The former is controlled by the concentration parameter α, while
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all clusters are assigned parameters drawn independently from the base measure. As α tends

to infinity, each customer is assigned to her own table, and has her own parameter (agreeing

with the idea that the θ’s are drawn i.i.d. from a smooth probability measure). When α

equals 0, all customers are assigned to a single cluster, showing that the random measure G

they were drawn from was a distribution degenerate at the cluster parameter.

Marginalizing out the cluster parameters θ∗, consider the distribution over partitions

specified by the CRP:

P (πN) =
αKN−1

[α + 1]N1

KN∏
c=1

(nc − 1)! (1.10)

This can be viewed as a distribution over partitions of the integers 1 to N , and is called the

Ewens’ sampling formula [11]. Ewens’ sampling formula characterizes the clustering structure

induced by the CRP (and thus the DP); for a number of properties of this distribution over

partitions, see [35]. We discuss a few below.

First, observe that the probability of a partition depends only on the number of the

blocks of the partition and their sizes, and is independent of the identity of the elements

that constitute the partition. In other words, the probability of a partition of the integers

1 to N is invariant to permutations of the numbers 1 to N . Thus, despite its sequential

construction, the CRP defines an exchangeable distribution over partitions. Exchangeability

has important consequences which we discuss later in Section 1.5.1.

Next, under the CRP, the probability that customer i creates a new table is α/(α+ i−1).

Thus KN , the number of clusters that N observations will be partitioned into, is distributed

as the sum of N independent Bernoulli variables, the ith having probability α/(α + i − 1).

Letting N (0, 1) be the standard normal distribution, and letting
d→ indicate convergence in

distribution, one can show that as N →∞,

KN/ log(N)→ α, (KN − α log(N))/
√
α log(N)

d→ N (0, 1) (1.11)
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Figure 1.1: Samples from a DP whose base measure G0 (the dashed blue curve) is the
standard normal N (0, 1). From left to right, the concentration parameter α equals 0.1, 1
and 10. G0 is not normalized in the figure.

Finally, let C
(N)
k represent the number of clusters with k customers. As N →∞,

(
C

(N)
1 , C

(N)
2 , C

(N)
3 , . . .

)
d→ (Z1, Z2, Z3, . . .) (1.12)

where the Zi, i = 1, 2, . . . are independent Poisson distributed random variables with E[Zi] =

α/i. Thus, even as the number of observations N tends to infinity, one expects that under

the CRP, the number of clusters with, say, just 1 observation remains O(1). [35] also includes

distributions over these quantities for finite N , but they are more complicated. Results like

these are useful to understand the modelling assumptions involved in using a Dirichlet process

for clustering. Despite its nonparametric nature, these assumptions can be quite strong, and

an active area of research is the construction and study of more flexibile alternatives. We

review a few in Section 1.5.

1.2.2 The stick-breaking construction

The previous section showed that observations drawn from a DP-distributed probability

measure G have non-zero probability of being identical. This suggests that G has an atomic

component. In fact G is purely atomic [2], this follows from the fact any sample drawn

from G has non-zero probability of being repeated later on. Moreover, the previous section

showed that the number of components is unbounded, growing as log(N), and implying that
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G has an infinite number of atoms. In fact, G can be written as

G =
∞∑
i=1

wiδθi (1.13)

As equation (1.9) suggests, under a DP, the sequence of weights (wi) and the sequence

of locations (θi) are independent of each other, with the latter drawn i.i.d. from the base

distribution G0. The weights, which must sum to 1, are clearly not independent, however

[40] provided a remarkably simple construction of these weights.

Consider a reordering the weights obtained by iteratively sampling without replacement

from the set of weights {wi}. At any stage, a weight wi selected from the infinite set

of remaining weights with probability proportional to wi. This constitutes a ‘size-biased’

reordering of the weights3.

Consider a second sequence of weights, now obtained by repeatedly breaking a ‘stick’ of

length 1. With an initial length equal to 1, repeatedly break off a Beta(1, α)-distributed

fraction of the remaining stick-length. Letting Vi ∼ Beta(1, α), the sequence of weights are

(V1, V2(1− V1), V3(1− V2)(1− V1), . . .) (1.14)

This countable sequence of weights (which adds up to 1) has what is called a GEM(α, 0)

distribution (after Griffiths, Engen and McCloskey). Importantly, this sequence of weights

has the same distribution as the size-biased reordering of the DP weights [35]. The sequence

of weights, along with an infinite (and independent) sequence of θi’s, defines a sample from

a DP via equation (1.13).

The stick-breaking representation provides a simple constructive definition of the DP.

Since the sequence of weights returned by the stick-breaking construction is stochastically

decreasing, we can construct truncated approximations to the DP (e.g. by setting Vk = 1);

such truncations are useful for posterior computation. The stick-breaking construction can

also be generalized to construct other nonparametric priors [19].

3As a side note, when the weights are placed in the order their corresponding clusters were created under the CRP, one
obtains a size-biased reordering.
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Figure 1.2: Realizations of two DP mixture models, with the DP determining cluster means
(left), and means and covariance matrices (right). Ellipses are 2 standard deviations.

1.2.3 Dirichlet process mixtures and clustering

Since a sample G drawn from a DP is discrete, it is common to smooth it by convolving with

a kernel. The resulting model is a nonparametric prior over smooth probability densities

and is called a Dirichlet process mixture model (DPMM) [29]. Let f(x, θ) be a nonnegative

kernel on X × Θ, with
∫
X f(x, θ)dx = 1 for all θ. The function f thus defines a family of

smooth probability densities on the space X (the observation space), indexed by elements

of Θ (the parameter space). Observations then come from the following hierarchical model:

G ∼ DP(α,G0) (1.15)

θi ∼ G, xi ∼ f(x, θi) (1.16)

In the context of clustering, the DPMM corresponds to an infinite mixture model [38]. The

DP induces a clustering among observations, with observations in the cth cluster having

parameter θ∗c . These cluster parameters are drawn i.i.d. from the base measure G0, which

characterizes the spread of clusters in parameter space. The cluster parameter determines

properties like location, spread, and skewness of the smoothing kernel f .

Figure 1.2 shows the distribution of 1000 data points from two DPMMs. In both cases,

the concentration parameter α was set to 1. Both models used Gaussian kernels (and so

are DP mixtures of Gaussians), however for the first plot, all kernels had a fixed, isotropic

covariance. Here, the parameter of each cluster was its mean, so that both Θ and X were
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the 2-dimensional Euclidean space R2. We set the base measure G0 as a conjugate normal

with mean zero and a standard deviation equal to 10. In the second case, the covariance of

the Gaussian kernels also varied across clusters, so that Θ = R2× S+
2 (S2

+ being the space of

positive-definite, two-dimensional symmetric matrices). In this case, we set the base measure

as the conjugate normal-inverse-Wishart distribution.

In the examples above, we set parameters to clearly demonstrate the clustering structure

of DPMM. Real data is usually more ambigious with multiple explanations that are all

plausible. It is in such situations that the Bayesian approach of maintaining a posterior

distribution over all possible configurations is most useful. At the same time, it is also in

such situations that inferences are most sensitive to aspects of the prior, and one needs to

be careful about a cavalier use of conjugate priors. Often, the base-measure G0 is chosen to

have heavy tails, and typically, hyperpriors are placed on parameters of G0. The clustering

structure is sensitive to the parameter α, and one often places priors on this as well.

The Chinese restaurant process of Section 1.2.1 to sample parameters from the DP is

easily extended to sample observations from the DPMM. Now, after customer N + 1 chooses

her table (and thus her parameter θN+1), she samples a value xN+1 from the probability

density f(·, θN+1). When the G0 is conjugate to f , one need not even represent the table

parameters θ∗, and can directly sample a new observation given the previous observations

associated with that table.

Given observations from a DPMM, the posterior distribution over clusterings is much more

complicated that with the DP. Why this is so is easy to see: given the set of parameters θ,

we already have the clustering stucture, this is no longer the case givenX. Where previously

the posterior over the random measure G was also a Dirichlet process, it now is a mixture

of Dirichlet processes (with a combinatorial number of components, one for each possible

clustering of the observations). One thus has to resort to approximate inference techniques

like MCMC or variational approximations. We describe a few such techniques later in Section

1.4, first, we concretize ideas by discussing some modelling applications.
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1.3 Example applications

The Dirichlet process has found wide application as a model of clustered data. Often, ap-

plications involve more complicated nonparametric models extending the DP, some of which

we discuss in Section 1.5. Applications include modelling text (clustering words into topics

[45]), modelling images (clustering pixels into segments [41]), genetics (clustering haplotypes

[50]), biostatistics (clustering functional response trajectories of patients [1]), neuroscience

(clustering spikes [49]), as well as fields like cognitive science [16] and econometrics [15]. Even

in density modelling applications, using a DPMM as a prior involves an implicit clustering

of observations, this can be useful in interpreting results. Below, we look at three examples.

1.3.1 Clustering microarray expression data

A microarray experiment returns expression levels yrgt of a group of genes g ∈ {1, . . . , G}
across treatment conditions t ∈ {1, . . . , T} over repetitions r ∈ {1, . . . , Rt}. In [9], the

expression levels over repetitions are modelled as i.i.d. draws from a Gaussian with mean

and variance determined by the gene and treatment: yrgt ∼ N (µg + τgt, λ
−1
g ). Here (µg, λg)

are gene-specific mean and precision parameters, while τgt represent gene-specific treatment

effects. To account for the highly correlated nature of this data, genes are clustered as co-

regulated genes, with elements in the same cluster having the same parameters (µ∗, τ ∗, λ∗).

In [9], this clustering is modelled using a Dirichlet process, with a convenient conjugate base

distribution G0(µ∗, τ ∗, λ∗) governing the distribution of parameters across clusters. Besides

allowing for uncertainty in the number of clusters and the cluster assignments, [9] show how

such a model-based approach allows one to deal with nuisance parameters: in their situation,

they were not interested in the effects of the gene-specific means µg. The model (including

all hyperparameters) was fitted using an MCMC algorithm, and the authors were able to

demonstrate superiority over a number of other clustering methods.
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1.3.2 Bayesian Haplotype inference

Most differences in the genomes of two individuals are variations in single nucleotides at spe-

cific sites in the DNA sequence. These variations are called single nucleotide polymorphisms

(SNPs), and in most cases, individuals in the population have one of two base-pairs at any

SNP site. This results in one of two alleles at each SNP site, labelled either ‘0’ or ‘1’. A

sequence of contiguous alleles in a local region of a single chromosome of an individual is

called a haplotype. Animals like human beings are diploid with two chromosomes, and the

genotype is made up of two haplotypes. Importantly, with present day assaying technology,

the genotype obtained is usually unphased, and does not indicate which haplotype each of

the two base pairs at each site belongs to. Thus, the genotype is a string of ‘00’s,‘11’s and

‘01’s, with the last pair ambiguious about the underlying haplotypes. Given a collection of

length M genotypes from a population, [50] consider the problem of disentangling the two

binary strings (haplotypes) that compose each unphased genotype. To allow statistical shar-

ing across individuals, they treat each haplotype as belonging to one of an infinite number

of clusters, with weights assigned via a Dirichlet process. The parameter of each cluster is

drawn from a product of M independent Bernoulli random variables (this is the base mea-

sure G0), and can be thought of as the cluster prototype. The individual haplotypes in the

cluster differ from the cluster prototype at any location with some small probability of mu-

tation (this forms the kernel f). The two haplotypes of each individual are two independent

samples from the resulting DP mixture model. Given the observed set of genotypes, the

authors infer the latent variables in the model by running an MCMC sampling algorithm.

1.3.3 Spike sorting

Given a sequence of action potentials or spikes recorded by an electrode implanted in an

animal, a neuroscientist has to contend with the fact that a single recording includes activ-

ity from multiple neurons. Spike sorting is essentially the process of clustering these action

potentials, assigning each spike in a spike train to an appropriate neuron. The number of

neurons is unknown, and [49] assume an infinite number using a Dirichlet process. Each neu-

ron has its own stereotypical spike shape, which can be modelled using a Gaussian process as
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the base measure ([49], as is typical, model lower-dimensional PCA projections of the spike

shape as multivariate Gaussians). Adding a Gaussian smoothing kernel f to model measure-

ment noise, the resulting model is a DP mixture of Gaussians. Again, given observations,

one can perform posterior inference using techniques we describe next.

1.4 Posterior inference

Given observations X from a Dirichlet process mixture model, inference involves character-

izing the posterior distribution over cluster assignments of data points, as well as the cluster

parameters. Implicit in this distribution are quantities like the distribution over the number

of clusters underlying the observed dataset, the probability that two observations belong to

the same cluster and so on. A straightforward expression for this distribution follows from

the CRP representation (recall that πN is a partition of the integers 1 to N):

p(πN , {θ∗1, . . . , θ∗|πN |}|X) ∝

α|πN |−1

|πN |∏
i=1

(|πNi | − 1)!

|πN |∏
i=1

G0(θ∗i )

 N∏
i=1

F (xi|θ∗ci) (1.17)

Unfortunately, hidden in the expression about is an intractible normalization constant which

involves summing over the combinatorial number of partitions of N data points. This makes

calculating exact posterior expectations computationally intractable even when all distribu-

tion are chosen to be conjugate, and one has to resort to approximate inference techniques.

Below, we look at two dominant approaches, sampling and deterministic approximations.

1.4.1 Markov chain Monte Carlo

By far the most widespread approach to posterior inference for DP mixture models is Markov

chain Monte Carlo (MCMC). The idea here is to set up a Markov chain whose state at any

iteration instantiates all latent variables of interest. At each iteration, the state of the chain is

updated via a Markov transition kernel whose stationary distribution is the desired posterior

distribution over the latent variables. By running the chain for a large number of iterations,
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we obtain a sequence of samples of the unobserved variables whose empirical distribution

converges to the posterior distribution. After discarding initial ‘burn-in’ samples corrupted

by the arbitrary initialization of the chain, the remaining samples can be used to calculate

posterior expectations and to make predictions. Typical quantities of interest include the

probability two observations are co-clustered (often represented by a co-occurence matrix),

the posterior over the number and sizes of clusters, and the posterior over cluster parameters.

Note that each MCMC sample describes a hard clustering of the observations, and very often

a single sample is used to obtain a ‘typical’ clustering of observations.

The different representations of the DP outlined in the earlier sections can be exploited

to construct different samplers with different properties. The simplest class of samplers

are marginal samplers that integrate out the infinite dimensional probability measure G,

and directly represent the partition structure of the data [10]. Both the Chinese restau-

rant process and the Pólya urn scheme provide such representations, moreover, they provide

straightforward cluster assignment rules for the last observation. Exploiting the exchange-

ability of these processes, one cycles through all observations, and treating each as the last,

assigns it to a cluster given the cluster assignments of all other observations, and the cluster

parameters.

Algorithm 1.4.1 outlines the steps involved, the most important being step 4. In words,

the probability an observation is assigned to an existing cluster is proportional to the number

of the remaining observations assigned to that cluster, and to how well the cluster parameter

explains the observation value. The observation is assigned to a new cluster with probability

proportional to the product of α and its marginal probability integrating θ out. When the

base measure G0 is conjugate, the latter integration is easy. The nonconjugate case needs

some care, and we refer the reader to [32] for an authoritative account of marginal Gibbs

sampling methods for the DP.
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Algorithm An iteration of MCMC using the CRP representation

Input: The observations (x1, . . . , xN)

A partition π of the observations, and the cluster parameters θ∗

Output: A new partition π̃, and new cluster parameters θ̃∗

1. for i from 1 to N do:

2. Discard cluster assignment ci of observation i, and call the updated partition π̃\i.

3. If i belonged to its own cluster, discard θci from θ∗.

4. Update π̃ from π̃\i by assigning i to a cluster with probability

p(ci = k|π̃\i,θ∗) ∝

 |π̃
\i
k |f(xi, θ

∗
k) k ≤ |π̃\i|

α
∫

Θ
f(xi, θ)G0(dθ) k = |π̃\i|+ 1

5. If we assign i to a new cluster, sample a cluster parameter from

p(θ̃∗ci |π̃, x1, . . . , xN) ∝ G0(θ̃∗ci)f(xi, θ̃
∗
ci

)

6. end for

7. Resample new cluster parameters θ̃∗c (with c ∈ {1, . . . , π̃|}) from the posterior

p(θ̃∗c |π̃, x1, . . . , xN) ∝ G0(θ̃∗c )
∏

i s.t. ci=c

f(xi, θ̃
∗
c )

While the Gibbs sampler described above is intuitive and easy to implement, it makes very

local moves, making it difficult for the chain to explore multiple posterior modes. Consider

a fairly common situation where two clusterings are equally plausible under the posterior,

one where a set of observations are all allocated to a single cluster, and one where they are

split into two nearby clusters. One would hope that the MCMC sampler spends an equal

amount of time in both configurations, moving from one to the other. However splitting a
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cluster into two requires the Gibbs sampler to sequentially detach observations from a large

cluster, and assign them to a new cluster. The rich-get-richer property of the CRP, which

encourages parsimony by penalizing fragmented clusterings, makes these intermediate states

unlikely, and results in a low probability valley separating these two states. This can lead

to the sampler mixing poorly. To overcome this, one needs to interleave the Gibbs updates

with more complex Metropolis-Hastings proposals that attempt to split or merge clusters.

Marginal samplers that attempt more global moves include [20] and [27].

A second class of samplers are called blocked or conditional Gibbs samplers, and explicitly

represent the latent mixing probability measure G. Since the observations are drawn i.i.d.

from G, conditioned on it, the assignment of observations to the components of G can

be jointly updated. Thus, unlike the marginal Gibbs sampler, conditioned on G, the new

partition structure of the observations is independent of the old. A complication is that

the measure G is infinite-dimensional, and cannot be represented exactly in a computer

simulation. A common approach is to follow [19] and maintain an approximation to G by

truncating the the stick-breaking construction to a finite number of components.

Since the DP weights are stochastically ordered under the stick-breaking construction, one

would expect only a small error for a sufficiently large truncation. In fact, [19] show that if

the stick-breaking process is truncated after K steps, then the error decreases exponentially

with K. Letting N be the number of observations, and ‖G− G̃K‖1 =
∫

Θ
|G(dθ)− G̃K(dθ)|

be the L1-distance between G and its truncated version G̃K , we have

‖G− G̃K‖1 ∼ 4N exp (−(K − 1)α) (1.18)

As [19] point out, for N = 150 and α = 5, a truncation level of K = 150 results in an error

bound of 4.57×10−8, making it effectively indistinguishable from the true model. Algorithm

1.4.1 outlines a conditional sampler with truncation.
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Algorithm An iteration of MCMC using the stick-breaking representation

Input: The observations (x1, . . . , xN), and a truncation level K

Stick-breaking proportions V = (V1, . . . , VK−1) (with VK = 1)

Component parameters θ∗ = (θ1, . . . , θK)

Component indicator variables Z = (z1, . . . , zN)

Output: New values of Ṽ , θ̃, and Z̃

1. Sample new component assignments z̃i, (with i ∈ {1, . . . , N}) with

p(z̃i = k) ∝ Vk

k−1∏
j=1

(1− Vj)f(xi, θk), k ≤ K

2. Resample new component parameters θ̃∗k (with c ∈ {1, . . . , K}) from the posterior

p(θ̃∗k|π̃, x1, . . . , xN) ∝ G0(θ̃∗k)
∏

i s.t. z̃i=k

f(xi, θ̃
∗
k)

3. Resample new stick-breaking proportions Ṽk (with k ∈ {1, . . . , K − 1}) with

Ṽk ∼ Beta(1 +mk, α +
K∑

j=k+1

mj), with mk =
N∑
j=1

δk(z̃j)

Often, there are situations when one does not wish to introduce a truncation error. This

is particularly true when the infinite-dimensional G has some prior other than the Dirichlet

process, leading to error bounds that decay much more slowly. A solution is to have a

random truncation level, where the data is allowed to guide the truncation level. See [46] or

[34] for descriptions of such samplers; these remain asymptotically unbiased despite working

with finite truncations of infinite-dimensional objects.
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1.4.2 Variational inference

The idea behind variational inference is to approximate the intractable posterior with a

simpler distribution, and use this to approximate quantities like cluster parameters and as-

signment probabilities. Variational methods have the added advantage of providing approx-

imations to the marginal likelihood of the observed data. For concreteness, we assume the

smoothing kernel in the DPMM belongs to an exponential family distribution parametrized

by θ∗: f(x, θ∗) = h(x) exp
(
xT θ∗ − a(θ∗)

)
(a(θ∗) is the log normalization constant). We

also assume the base-measure G0 belongs to the conjugate exponential family with sufficient

statistics (θ∗,−a(θ∗)) and natural parameters (λ1, λ2): G0(θ∗) ∝ exp((θ∗)Tλ1 − a(θ∗)λ2).

Recall the DPMM posterior is a complicated joint distribution over variables like a prob-

ability measure with infinite atoms as well as indicator variables assigning observations to

atoms. These variables are dependent, for instance the distribution over atom locations de-

pends on the assigned observations, and the weights depend on the locations of the atoms

and assigned observations. In the mean-field approximation of [5], these dependencies are

discarded, and the posterior is approximated as a product of two independent distributions,

one over probability measures, and the other over cluster assignments. The distribution

over probability measures is restricted to measures with K atoms (K is a parameter of the

algorithm) of the form

G̃ =
K∑
i=1

wiδθ∗i (1.19)

Further under the posterior approximation, the locations and the weights are assumed in-

dependent. The posterior over the ith location θ∗i is approximated as a member of the

same exponential family distribution as the base-measure, with natural parameters (τi1, τi2).

Write it as q(·|τi). The set of weights (w1, . . . , wK) are distributed according a generalized

truncated stick-breaking construction, with the ith stick-breaking proportion drawn from a

Beta(γi1, γi2) distribution. In equations,

wi = Vi
∏
j<i

(1− Vj); VK = 1, Vi ∼ Beta(γi1, γi2), i < K; θ∗i ∼ q(·|τi) (1.20)
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Finally, the posterior assignment probability of the ith observation is independent of the

other quantities, and is specified by a K-dimensional probability vector φi. The set of

parameters τi, γi1, γi2, φij specify the approximate posterior distribution, and one optimizes

these to minimize the Kullback-Leibler divergence from the true posterior.

Algorithm An iteration of the variational Bayes algorithm of [5]

Input: The observations (x1, . . . , xN), and a truncation level K

Stick-breaking proportions V = (V1, . . . , VK−1) (with VK = 1)

Component parameters θ∗ = (θ1, . . . , θK)

Cluster assignment probabilities Φ = (φ1, . . . ,φN)

Output: New values of V ,θ, and Φ

1. Update the Beta parameters for the stick-breaking proportions V as

γk1 = 1 +
N∑
i=1

φik, γk2 = 1 +
N∑
i=1

K∑
j=k+1

φij, k ∈ {1, . . . , N}

2. Update τ

τk1 = λ1 +
N∑
i=1

φikxi, τk1 = λ2 +
N∑
i=1

φik {k = 1, . . . , K}

3. Update the component assignment probability vectors φi as

φik ∝ exp(Si), Si = Eq[log Vi] +
i−1∑
j=1

Eq[log(1− Vi)] + Eq[(θ
∗
i )
TXi]− Eq[a(θ∗t )]

Algorithm 1.4.2 from [5] describes an iteration of a coordinate-descent algorithm reducing

the KL-divergence to a local minimum. Variational algorithms are fast and relatively simpler

to debug than the stochastic MCMC algorithms. They however introduce bias that is hard to

quantify, and are not as modular as MCMC which is quite easily extended to more complex

hierarchical models. Other deterministic inference schemes include [26, 25, 31, 47].
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1.4.3 Comments on posterior computation

In general, beyond a little additional bookkeeping, these algorithms for posterior inference are

not much less efficient than those for the corresponding finite mixture models. For MCMC

sampling algorithms (especially without truncation), the number of clusters will vary from it-

eration to iteration, and a balance must be struck between reallocating/deallocating memory

for the various data structures, and maintaining large and fragmented data structures.

As far as MCMC sampling is concerned, marginal samplers are generally acknowledged

to have better mixing properties, though they usually require some form of split-merge to

get out of local optima. Conditional samplers can suffer from correlations between cluster

assignments and Dirichlet process weights, though the fact that observations can be assigned

to clusters independently offers promise for parallelized algorithms. Samplers are typically

run for 5000 to 10000 iterations, and mixing is assessed using standard MCMC diagnostics

[7] on statistics like the number of clusters, the probability two observations are co-clustered

or the size of the cluster an observation is assigned to.

While variational algorithms offer a number of advantages, these often get trapped in

local optima and might require multiple reruns. Additionally, the mean-field nature of these

algorithms results in updates that are no longer sparse: unlike an MCMC update which

conditions on the cluster assignments of a set of observations, a variational update typically

depends on the probabilities of each observation being assigned to all clusters. Thus, even if

a variational algorithm requires fewer iterations than an MCMC sampler, each update can

require more computation that an MCMC update.

1.5 Extensions

1.5.1 Exchangeability and consistency

Our concern in this chapter was the study of Bayesian nonparametric approaches to clus-

tering. Abstractly, this can viewed as the study of flexible probability distributions over
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partitions of integers. Via the Dirichlet process, we arrived at the Ewens’ sampling for-

mula (equation (1.10)) giving probabilities of partitions of the integers 1 to N . Though

constructed sequentially via the Chinese restaurant process, we saw that the resulting prob-

ability is exchangeable: it is independent of the order in which the customers arrive, and is

thus invariant to permutations of the integers 1 to N . Exchangeability is important in many

clustering applications where we do not want the order of observations to affect inferences.

The Ewens’ sampling formula also has a consistency (or projectivity) property: the prob-

ability of πN is equal to the sum of the probabilities of all partitions πN+1 of 1 to N + 1 that

are consistent with πN . Consistency follows directly from the sequential construction of the

CRP and is an important property as well: we do not want observations that were not seen

to affect our inferences, these should remain irrelevant. A sequence of consistent partitions

for all natural numbers implies a distribution over partitions of the natural numbers N [35],

and when each finite distribution is exchangeable as well, the resulting distribution is called

an infinitely exchangeable partition function (EPPF).

There is another way to see why Ewens’ sampling formula is infinitely exchangeable: this

is a consequence of the fact that the observations are drawn i.i.d. from the DP-distributed

probability measure G. Conditioned on G, the order of the observations is irrelevant, and will

remain so with G integrated out. Consistency is an easy consequence of the i.i.d. construction

as well. According to de Finetti’s theorem [22], for any sequence of infinitely exchangeable

observations, there exists a latent variable (possible infinite dimensional), conditioned on

which, the observations are i.i.d. For the CRP, this latent variable is the DP-distributed

probability G. Drawing observations i.i.d. from G induces a partition of N with observa-

tions with the same value in the same cluster. Treating these values as colours drawn i.i.d.

from a ‘paintbox’ G, Kingman’s paintbox construction [24] specializes de Finetti’s theo-

rem to infinitely exchangeable partitions: any infinite EPPF has a mixture of paintboxes

respresentation, and can be induced by sampling from a random probability measure G.

Even if one is only interested in the clustering of observations, a consistent, exchange-

able distribution over clusterings corresponds to an underlying random measure G. This

viewpoint can facilitate the study of asymptotics of clustering processes, the development of
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Figure 1.3: Number of clusters vs number of observations for the DP (left) and the Pitman-
Yor process (right)

efficient inference techniques, the construction of new clustering models as well as extensions

to more structured data where exchangeability is relaxed. We consider two extensions below.

1.5.2 Pitman-Yor processes

Under the CRP, the number of clusters grows logarithmically with the number of obser-

vations. Conditioned on the the number of clusters, the distribution over partitions is in-

dependent of the concentration parameter, suggesting a somewhat limited control in the

prior specification. The Pitman-Yor process [36] (also called the two-parameter Poisson-

Dirichlet process) is a popular extension of the DP that remedies some of these limitations.

Like the DP, this too is a prior over discrete probability measures, and is parametrized as

PY(α, d,G0). The extra parameter d, called the discount parameter, takes values in [0, 1),

while α (the concentration parameter) satisfies α > −d. The Pitman-Yor process also has

a stick-breaking construction; in this case, rather than all stick-breaking proportions being

i.i.d. distributed, the ith breaking proportion Vi has a Beta(1−d, α+ id) distribution. Again,

the random measure can be integrated out, resulting in a sequential clustering process that

generalizes the Chinese restaurant process (now called the two-parameter CRP). Here, when

the (N + 1)st customer enters the restaurant, she joins a table with nc customers with prob-

ability proportional to nc − d. On the other hand, she creates a new table with probability

proportional to α +KNd, where as before, KN is number of tables. When the discount pa-



1.5. EXTENSIONS 25

rameter equals 0, the Pitman-Yor process reduces to the Dirichlet process. Setting d greater

than 0 allows the probability of a new cluster to increase with the number of existing clusters,

and results in a power-law behaviour:

KN

Nd
→ Sd (1.21)

Here Sd is a strictly positive random variable (having the so-called polynomially-tilted

Mittag-Leffler distribution [35]). Power law behaviour has been observed in models of text

and images, and applications of the PY process in these domains [42, 41] have been shown

to perform significantly better than the DP (or simpler parametric models).

The two-parameter CRP representation of the PY-process allows us to write down an

EPPF that generalizes Ewens’ sampling formula:

P (πN) =
[α + d]KN−1

d

[α + 1]N1

KN∏
c=1

[1− d]nc
1 (1.22)

The EPPF above belongs to what is known as a Gibbs-type prior : there exist two sequences

of nonnegative reals v = (v0, v1, . . .) and w = (w1, w2, . . .) such that the probability of a

partition πN is

P (πN) ∝ w|πN |

|πN |∏
c=1

v|πN
c | (1.23)

This results in a simple sequential clustering process: given a partition πN , the probabil-

ity that customer N + 1 joins cluster c ≤ |πN | is proportional to v|πN
c |+1/v|πN

c |, while the

probability of creating a new cluster is v1w|πN |+1/w|πN |. [35] shows that any exchangeable

and consistent Gibbs partition must result from a Pitman-Yor process or an m-dimensional

Dirichlet distribution (or various limits of these). The CRP for the finite Dirichlet distri-

bution has α = −κ < 0 and d = mκ for some m = 1, 2, . . .. Any other consistent and

exchangeable distribution over partitions will result in a more complicated EPPF (and thus,

for example, a more complicated Gibbs sampler). For more details, see [4]
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1.5.3 Dependent random measures

The assumption of exchangeability is sometimes a simplification that disregards structure

in data. Observations might come labelled with ordinates like time, position or category,

and lumping all data points into one homogeneous collection can be undesirable. The other

extreme of assigning each group an independent clustering is also a simplification, it is

important to share statistical information across groups. For instance, a large cluster in

one region of space in one group might a priori suggest a similar cluster in other groups as

well. A popular extension of the DP that achieves this is the hierarchical Dirichlet process

(HDP)[45]. Here, given a set of groups T , any group t ∈ T has its own DP-distributed

random measure Gt (so that observations within each group are exchangeable). The random

measures are coupled via a shared, random base measure G which itself is distributed as a

DP. The resulting hierarchical model corresponds to the following generative process:

G ∼ DP(α0, G0) (1.24)

Gt ∼ DP(α,G) for all t ∈ T (1.25)

θit ∼ Gt for i in 1 to Nt (1.26)

In our discussion so far, we have implicitly assumed the DP base measure to be smooth.

For the group-specific probability measures Gt of the HDP, this is not the case; now, the

base measure G (which itself is DP-distributed) is purely atomic. A consequence is that the

parameters of clusters across groups (which are drawn from G) now have nonzero probability

of being identical. In fact, these parameters themselves are clustered according to a CRP, and

[45] show how all random measures can be marginalized out to give a sequential clustering

process they call the Chinese restaurant franchise. The clustering of parameters means

that the more often a parameter is present, the more likely it is to appear in a new group.

Additionally, a large cluster in one group implies (on average) large clusters (with the same

parameter) in other groups.

A very popular application of the HDP is the construction of infinite topic models for

document modelling. Given a fixed vocabulary of words, a topic is a multinomial distribution

over words. A document, on the other hand, is characterized by a distribution over topics,
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Figure 1.4: (left) and (middle) 1000 samples from an HDP with two groups. Both groups
have three clusters in common, with an additional cluster in the first. (right) Perplexity on
test documents for HDP and LDA with different number of topics

and the clustering problem is to infer a set of topics, as well as an assignment of each word of

each document to a topic. A nonparametric approach assumes an infinite number of topics,

with a random DP-distributed measure G that characterizes the average distribution over

topics across all documents. Any particular document has its own distribution over topics,

centered around G by drawing it from a DP with base measure G. The discreteness of G

ensures the same infinite set of topics is shared across all documents, and allows inferences

from one document to propagate to other documents. Figure 1.4, adapted from [45], shows

that this nonparametric model automatically achieves a performance comparable to choosing

the optimal number of topics in the parametric version of the model. Here the performance

measure is ‘perplexity’, corresponding to how surprised different models are upon seeing a

held-out test document.

The HDP assumes that the groups themselves are exchangeable, again, one might wish

to refine this modelling assumption. An obvious approach is to hierarchically organize the

groups themselves. [42] consider n-level hierarchies, while [48] allow these hierarchies to be

infinitely deep. Alternatively, the groups could be indexed by elements of a space T with

some topological structure (T could be space or time), and one might wish to construct a

measure-valued stochastic process Gt for all t ∈ T . Here, the measure Gt at any point has

an appropriate distribution (say, the Dirichlet process), and the similarity between measures

varies gradually with ∆t. Note that under the HDP, the group-specific measures Gt are

DP-distributed conditioned on G, this no longer is true when G is marginalized out. Con-

sequently, the clustering assumptions one makes at the group-level are different from those
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specified under a DP. An active area of research is the construction of dependent random

probability measures with specified marginal distributions over probability measures, as well

as flexible correlation structures [30].

1.6 Discussion

In this chapter, we introduced the Dirichlet process, and described various theoretical and

practical aspects of its use in clustering applications. There is a vast literature on this topic,

and a number of excellent tutorials. Among these we especially recommend [43, 44, 14].

In spite of its nonparametric nature, the modelling assumptions underlying the DP can be

quite strong. While we briefly discussed a few extensions, there is much we have had to leave

uncovered (see [28] for a nice overview). Many generalizations build on the stick-breaking

representation or the CRP representation of the DP. Another approach extends the DP’s

construction as a normalized Gamma process [12] to construct random probability measures

by normalizing completely random measures [23]; these are atomic measures whose weights

wi are essentially all independent. The resulting class of normalized random measures [21]

form a very flexible class of nonparametric priors that can be used to construct different

extensions of the DP (see for example, [37]).

A different class of nonparametric priors are based on the Beta process [18], and are used

to construct infinite feature models [17]. Here, rather than assigning each observation to one

of a infinite number of clusters, each observation can have a finite subset of a infinite number

of features. Such a distributed representation allows a more refined representation for sharing

statistical information. Infinite feature models also come with notions of exchangeability and

consistency. We recommend [6] for a nice overview of these ideas, and their relation to ideas

discussed here.

A major challenge facing the more widespread use of Bayesian nonparametric methods

is the development of techniques for efficient inference. While we described a few MCMC

and variational approaches, there are many more. More recent areas of research include the

development of algorithms for online inference and parallel inference.
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Finally, there is scope for a more widespread application of nonparametric methods to

practical problems. As our understanding of the properties of these models develops, it

is important that they are applied thoughtfully. At the end, these priors represent rich

and sophisticated modelling assumptions, and should be treated as such, rather than as

convenient ways of bypassing the question “how many clusters?”.
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