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Abstract

Discrete mixtures are used routinely in broad sweeping applications ranging from
unsupervised settings to fully supervised multi-task learning. Indeed, finite mix-
tures and infinite mixtures, relying on Dirichlet processes and modifications, have
become a standard tool. One important issue that arises in using discrete mix-
tures is low separation in the components; in particular, different components can
be introduced that are very similar and hence redundant. Such redundancy leads
to too many clusters that are too similar, degrading performance in unsupervised
learning and leading to computational problems and an unnecessarily complex
model in supervised settings. Redundancy can arise in the absence of a penalty on
components placed close together even when a Bayesian approach is used to learn
the number of components. To solve this problem, we propose a novel prior that
generates components from a repulsive process, automatically penalizing redun-
dant components. We characterize this repulsive prior theoretically and propose
a Markov chain Monte Carlo sampling algorithm for posterior computation. The
methods are illustrated using synthetic examples and an iris data set.

Key Words: Bayesian nonparametrics; Dirichlet process; Gaussian mixture model; Model-based
clustering; Repulsive point process; Well separated mixture.

1 Introduction

Discrete mixture models characterize the density of y € ) C R as

k
F@W) = pnd(y;mm) ()
h=1

where p = (p1,...,pr)7 is a vector of probabilities summing to one, and ¢(-;7) is a kernel de-
pending on parameters v € I', which may consist of location and scale parameters. In analyses of
finite mixture models, a common concern is over-fitting in which redundant mixture components
located close together are introduced. Over-fitting can have an adverse impact on predictions and
degrade unsupervised learning. In particular, introducing components located close together can
lead to splitting of well separated clusters into a larger number of closely overlapping clusters. Ide-
ally, the criteria for selecting k in a frequentist analysis and the prior on k and {7} in a Bayesian
analysis should guard against such over-fitting. However, the impact of the criteria used and prior
chosen can be subtle.



Recently, [1] studied the asymptotic behavior of the posterior distribution in over-fitted Bayesian
mixture models having more components than needed. They showed that a carefully chosen prior
will lead to asymptotic emptying of the redundant components. However, several challenging prac-
tical issues arise. For their prior and in standard Bayesian practice, one assumes that vy, ~ Py
independently a priori. For example, if we consider a finite location-scale mixture of multivariate
Gaussians, one may choose P, to be multivariate Gaussian-inverse Wishart. However, the behavior
of the posterior can be sensitive to Py for finite samples, with higher variance Py favoring allocation
to fewer clusters. In addition, drawing the component-specific parameters from a common prior
tends to favor components located close together unless the variance is high.

Sensitivity to P, is just one of the issues. For finite samples, the weight assigned to redundant
components is often substantial. This can be attributed to non- or weak identifiability. Each mixture
component can potentially be split into multiple components having the same parameters. Even
if exact equivalence is ruled out, it can be difficult to distinguish between models having different
degrees of splitting of well-separated components into components located close together. This
issue can lead to an unnecessarily complex model, and creates difficulties in estimating the number
of components and component-specific parameters. Existing strategies, such as the incorporation
of order constraints, do not adequately address this issue, since it is difficult to choose reasonable
constraints in multivariate problems and even with constraints, the components can be close together.

The problem of separating components has been studied for Gaussian mixture models ([2]; [3]).
Two Gaussians can be separated by placing an arbitrarily chosen lower bound on the distance be-
tween their means. Separated Gaussians have been mainly utilized to speed up convergence of the
Expectation-Maximization (EM) algorithm. In choosing a minimal separation level, it is not clear
how to obtain a good compromise between values that are too low to solve the problem and ones
that are so large that one obtains a poor fit. To avoid such arbitrary hard separation thresholds, we
instead propose a repulsive prior that smoothly pushes components apart.

In contrast to the vast majority of the recent Bayesian literature on discrete mixture models, instead
of drawing the component-specific parameters {7, } independently from a common prior Py, we
propose a joint prior for {~1,...,7x} that is chosen to assign low density to ~y,s located close
together. The deviation from independence is specified a priori by a pair of repulsion parameters.
The proposed class of repulsive mixture models will only place components close together if it
results in a substantial gain in model fit. As we illustrate, the prior will favor a more parsimonious
representation of densities, while improving practical performance in unsupervised learning. We
provide strong theoretical results on rates of posterior convergence and develop Markov chain Monte
Carlo algorithms for posterior computation.

2 Bayesian repulsive mixture models

2.1 Background on Bayesian mixture modeling

Considering the finite mixture model in expression (1), a Bayesian specification is completed by
choosing priors for the number of components k, the probability weights p, and the component-
specific parameters ¥ = (71, ...,7v%)". Typically, k is assigned a Poisson or multinomial prior, p a
Dirichlet() prior with « = (a1, ...,ax)?, and 7y, ~ P, independently, with Py often chosen to
be conjugate to the kernel ¢. Posterior computation can proceed via a reversible jump Markov chain
Monte Carlo algorithm involving moves for adding or deleting mixture components. Unfortunately,
in making a k — k + 1 change in model dimension, efficient moves critically depend on the choice
of proposal density. [4] proposed an alternate Markov chain Monte Carlo method, which treats the
parameters as a marked point process, but does not have clear computational advantages relative to
reversible jump.

It has become popular to use over-fitted mixture models in which % is chosen as a conservative
upper bound on the number of components under the expectation that only relatively few of the
components will be occupied by subjects in the sample. From a practical perspective, the success of
over-fitted mixture models has been largely due to ease in computation.

As motivated in [5], simply letting o, = ¢/k for h = 1,...,k and a constant ¢ > 0 leads to an
approximation to a Dirichlet process mixture model for the density of y, which is obtained in the



limit as k approaches infinity. An alternative finite approximation to a Dirichlet process mixture is
obtained by truncating the stick-breaking representation of [6], leading to a similarly simple Gibbs
sampling algorithm [7]. These approaches are now used routinely in practice.

2.2 Repulsive densities

We seek a prior on the component parameters in (1) that automatically favors spread out compo-
nents near the support of the data. Instead of generating the atoms ~;, independently from F, one
could generate them from a repulsive process that automatically pushes the atoms apart. This idea
is conceptually related to the literature on repulsive point processes [8]. In the spatial statistics liter-
ature, a variety of repulsive processes have been proposed. One such model assumes that points are
clustered spatially, with the cluster centers having a Strauss density [9], that is p(k,~y) o 8* o)
where k is the number of clusters, 5 > 0,0 < p < 1 and r(7) is the number of pairwise centers that
lie within a pre-specified distance r of each other. A possibly unappealing feature is that repulsion
is not directly dependent on the pairwise distances between the clusters. We propose an alternative
class of priors, which smoothly push apart components based on pairwise distances.

Definition 1. A density h(v) is repulsive if for any 6 > O there is a corresponding € > 0 such that
h(y) < dforally € T'\ G, where G. = {7y : d(7s,7:) > ;s =1,...,k;i < s} and d is a metric.

Depending on the specification of the metric d(s, y;), a prior satisfying definition 1 may limit over-
fitting or favor well separated clusters. When d(ys, ;) is the distance between sub-vectors of v, and
«v; corresponding to only locations the proposed prior favors well separated clusters. Instead, when
d(vs, ;) is the distance between the sth and jth kernel, a prior satisfying definition 1 limits over-
fitting in density estimation. Though both cases can be implemented, in this paper we will focus
exclusively on the clustering problem. As a convenient class of repulsive priors which smoothly
push components apart, we propose

k
m(y) = (H 90(%)) h(7), )
h=1

with ¢; being the normalizing constant that depends on the number of components k. The proposed
prior is related to a class of point processes from the statistical physics and spatial statistics
literature referred to as Gibbs processes [10]. We assume gg : I' — Ry and h : 't — [0, 00) are
continuous with respect to Lesbesgue measure, and h is bounded above by a positive constant ¢y
and is repulsive according to definition 1. It follows that density 7 defined in (2) is also repulsive.
A special hardcore repulsion is produced if the repulsion function is zero when at least one pairwise
distance is smaller than a pre-specified threshold. Such a density implies choosing a minimal
separation level between the atoms. As mentioned in the introduction, we avoid such arbitrary
hard separation thresholds by considering repulsive priors that smoothly push components apart. In
particular, we propose two repulsion functions defined as

o= 11 sldey @ M) = min g{de)) @

{(s,5)€A} {(s.4)eA}
with A = {(s,j) : s =1,...,k;j < s} and g : Ry — [0, M] a strictly monotone differentiable
function with g(0) = 0, g(z) > 0 for all z > 0 and M < oo. It is straightforward to show that h
in (3) and (4) is integrable and satisfies definition 1. The two alternative repulsion functions differ
in their dependence on the relative distances between components, with all the pairwise distances
playing a role in (3), while (4) only depends on the minimal separation. A flexible choice of g
corresponds to

g{d(vs, 7)Y = exp [ = 7{d(vs, )} "], (5)

where 7 > 0 is a scale parameter and v is a positive integer controlling the rate at which g approaches
zero as d(ys, ;) decreases. Figure 1 shows contour plots of the prior m(+y1,72) defined as (2) with
go being the standard normal density, the repulsive function defined as (3) or (4) and g defined as
(5) for different values of (7,v). As 7 and v increase, the prior increasingly favors well separated
components.
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Figure 1: Contour plots of the repulsive prior 7(1,v2) under (3), either (4) or (5) and (6) with
hyperparameters (7, v) equal to ()(1,2), (I1)(1,4), (III)(5,2) and (IV)(5,4)

2.3 Theoretical properties

Let the true density fo : ®™ — R be defined as fy = Zﬁ‘;l por®(vor) With yo, € T and 7,8
such that there exists an €; > 0 such that min{(s7j):s< 7} d(vos, 'yoj) > €1 with d being the Euclidean
distance. Let f = ZZ=1 prod(yn) withy, € T. Lety ~ m withy = (v1,...,7v,)T and 7 satisfying
definition 1. Let p ~ A with A = Dirichlet(«) and k ~ g with pu(k = ko) > 0. Let 0 = (p, 7).
These assumptions on fy and f will be referred to as condition B0O. Let II be the prior induced on
U;’ilfk, where Fj, is the space of all distributions defined as (1).

We will focus on « being a location parameter, though the results can be extended to location-scale
kernels. Let | - |y denote the Ly norm and K L(fo, f) = [ folog(fo/f) refer to the Kullback-
Leibler (K-L) divergence between fy and f. Density fo belongs to the K-L support of the prior IT
if II{f : KL(fo,f) < €} > 0forall e > 0. The next lemma provides sufficient conditions under
which the true density is in the K-L support of the prior.

Lemma 1. Assume condition BO is satisfied with m = 1. Let Dy be a compact set containing
parameters (Yo1, - - -, Yoko ). Suppose vy ~ T with 7 satisfying definition 1. Let ¢ and 7 satisfy the
following conditions:

Al foranyy € Y, the map v — ¢(y; ) is uniformly continuous
A2. foranyy € Y, ¢(y;7) is bounded above by a constant

A3. [ folog {sup,ecp, ¢()} —log {infrep, (7)}| < oo

A4. 1w is continuous with respect to Lebesgue measure and for any vector x € T* with
ming(s jy.s<;} d(vs,25) > v for some v > 0 there is a 6 > 0 such that w(y) > 0 for all ~
satisfying ||y — z||1 <6

Then fy is in the K-L support of the prior 1L

Lemma 2. The repulsive density in (2) with h defined as either (3) or (4) satisfies condition A4 in
lemma 1.

The next lemma formalizes the posterior rate of concentration for univariate location mixtures of
Gaussians.

Lemma 3. Let condition BO be satisfied, let m = 1 and ¢ be the normal kernel depending on a
location parameter vy and a scale parameter o. Assume that condition (i), (i1) and (i) of theorem
3.1in [11] and assumption A4 in lemma 1 are satisfied. Furthermore, assume that

C1) the joint density m leads to exchangeable random variables and for all k the marginal density
of the location parameter 71 satisfies (| 71| > t) S exp (—q1t?) for a given g1 > 0



C2) there are constants uy,us,us > 0, possibly depending on fy, such that for any € < ug

7(|ly = 0ll < €) = uy exp(—uzko log(1/€))
Then the posterior rate of convergence relative to the Ly metric is €, = n~"/? logn.

Lemma 3 is essentially a modification of theorem 3.1 in [11] to the proposed repulsive mixture
model. Lemma 4 gives sufficient conditions for 7 to satisfy condition C1 and C2 in lemma 3.

Lemma 4. Let 7 be defined as (2) and h be defined as either (3) or (4), then T satisfies condition
C2 in lemma 3. Furthermore, if for a positive constant ny the function go satisfies go(|x| > t) <
exp(—n1t?), w satisfies condition C1 in lemma 3.

As motivated above, when the number of mixture components is chosen to be unnecessarily large, it
is appealing for the posterior distribution of the weights of the extra components to be concentrated
near zero. Theorem 1 formalizes the rate of concentration with increasing sample size n. One
of the main assumptions required in theorem 1 is that the posterior rate of convergence relative to
the L; metric is 6,, = n~Y/ 2(logn)? with ¢ > 0. We provided the contraction rate, under the
proposed prior specification and univariate Gaussian kernel, in lemma 3. However, theorem 1 is a
more general statement and it applies to multivariate mixture density of any kernel.

Theorem 1. Let assumptions BO — Bb be satisfied. Let m be defined as (2) and h be defined as
either (3) or (4). If & = max(aq, ..., ax) < m/2 and for positive constants r1, 12,13 the function
g satisfies g(x) < riax" for 0 < x < r3 then

k
P min o (i > Mn_1/2 logn q(1+5(k0,a)/57,2) -0
{{aesk}< > ()) (logn)

i=ko+1

lim limsup E°
M—00 nosoo

with s(ko, ) = ko — 1+ mko + a(k — ko), sy, = r2 +m/2 — & and Sy, the set of all possible
permutations of {1, ..., k}.

Assumptions (B1 — B5) can be found in the supplementary material. Theorem 1 is a modification
of theorem 1 in [1] to the proposed repulsive mixture model. Theorem 1 implies that the posterior
expectation of weights of the extra components is of order O {n‘l/ 2(log n)‘I(H“”(kO’“)/ sr3) } When
g is defined as (5), parameters r; and 75 can be chosen such that 1 = 7 and ro = v.

When the number of components is unknown, with only an upper bound known, the posterior rate
of convergence is equivalent to the parametric rate n~1/2 [12]. In this case, the rate in theorem 1
is n~1/2 under usual priors or the repulsive prior. However, in our experience using usual priors,
the sum of the extra components can be substantial in small to moderate sample sizes, and often
has high variability. As we show in Section 3, for repulsive priors the sum of the extra component
weights is close to zero and has small variance for small as well as large sample sizes. On the
other hand, when an upper bound on the number of components is unknown, the posterior rate of
concentration is n~ /2 (logn)? with ¢ > 0. In this case, according to theorem 1, using the proposed
prior specification the logarithmic factor in theorem 1 of [1] can be improved.

2.4 Parameter calibration and posterior computation

The parameters involved in the repulsion function A are chosen such that a priori, with high proba-
bility, the clusters will be adequately separated. Consider the case where ¢ is a location-scale kernel
with location and scale parameters (v, Y) and is symmetric about v. Here, it is natural to relate
the separation of two densities to the distance between their location parameters. The following
definition introduces the concept of separation level between two densities.

Definition 2. Let f1 and f5 be two densities having location-scale parameters (1, X1) and (2, X2)
respectively, with v1,v2 € T and X1,%o € Q. Given a metric t(-,-), a positive constant ¢ and a
Sfunction w : Q x Q — Ry, f1 and fo are c-separated if

t(y1,72) > cw(Eq, Bo)*/?

Definition 2 is in the spirit of [2] but generalized to any symmetric location-scale kernel. A mixture
of k densities is c-separated if all pairs of densities are c-separated. The parameters of the repulsion
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Figure 2: (I) Student’s t density, (1) two-components mixture of poorly (solid) and well separated
(dot-dash) Gaussian densities, referred as (I1a, [Ib), (I11) mixture of poorly (dot-dash) and well
separated (solid) Gaussian and Pearson densities, referred as (I11a, I11b), (IV) two-components
mixture of two-dimensional non-spherical Gaussians

function, (7,v), will be chosen such that, for an a priori chosen separation level ¢, definition 2
is satisfied with high probability. In practice, for a given pair (7,v), we estimate the probability
of pairwise c-separation empirically by simulating N replicates of (p, %) for each component
h =1,...,k from the prior. The appropriate values (7, /) are obtained by starting with small values,
and increasing until the pre-specified pairwise c-separated probability is reached. In practice, only 7
will be calibrated to reach a particular probability value. This is because v controls the rate at which
the density tends to zero as two components approach but not the separation level across them. In
practice we have found that ¥ = 2 provides a good default value and we fix v at this value in all our
applications below.

A possible issue with the proposed repulsive mixture prior is that the full conditionals are nonstan-
dard, complicating posterior computation. To address this, we propose a data augmentation scheme,
introducing auxiliary slice variables to facilitate sampling [13]. This algorithm is straightforward
to implement and is efficient by MCMC standards. Further details can be found in the supplemen-
tary material. It will be interesting in future work to develop fast approximations to MCMC for
implementation of repulsive mixture models, such as variational methods for approximating the full
posterior and optimization methods for obtaining a maximum a posteriori estimate. The latter ap-
proach would provide an alternative to usual maximum likelihood estimation via the EM algorithm,
which provides a penalty on components located close together.

3 Synthetic examples

Synthetic toy examples were considered to assess the performance of the repulsive prior in density
estimation, classification and emptying the extra components. Figure 2 plots the true densities in the
various synthetic cases that we considered. For each synthetic dataset, repulsive and non-repulsive
mixture models were compared considering a fixed upper bound on the number of components; extra
components should be assigned small probabilities and hence effectively excluded. The auxiliary
variable sampler was run for 10, 000 iterations with a burn-in of 5, 000. The chain was thinned by
keeping every 10th simulated draw. To overcome the label switching problem, the samples were
post-processed following the algorithm of [14]. Details on parameters involved in the true densities
and choice of prior distributions can be found in the supplementary material.

Table 1 shows summary statistics of the K-L divergence, the misclassification error and the sum of
extra weights under repulsive and non-repulsive mixtures with six mixture components as the upper
bound. Table 1 shows also the misclassification error resulting from hierarchical clustering [15]. In
practice, observations drawn from the same mixture component were considered as belonging to the
same category and for each dataset a similarity matrix was constructed. The misclassification error
was established in terms of divergence between the true similarity matrix and the posterior similar-



ity matrix. As shown in table 1, the K-L divergences under repulsive and non-repulsive mixtures
become more similar as the sample size increases. For smaller sample sizes, the results are more
similar when components are very well separated. Since a repulsive prior tends to discourage over-
lapping mixture components, a repulsive model might not estimate the density quite as accurately
when a mixture of closely overlapping components is needed. However, as the sample size increases,
the fitted density approaches the true density regardless of the degree of closeness among clusters.
Again, though repulsive and non-repulsive mixtures perform similarly in estimating the true density,
repulsive mixtures place considerably less probability on extra components leading to more inter-
pretable clusters. In terms of misclassification error, the repulsive model outperforms the other two
approaches while, in most cases, the worst performance was obtained by the non-repulsive model.
Potentially, one may favor fewer clusters, and hence possibly better separated clusters, by penalizing
the introduction of new clusters more through modifying the precision in the Dirichlet prior for the
weights; in the supplemental materials, we demonstrate that this cannot solve the problem.

Table 1: Mean and standard deviation of K-L divergence, misclassification error and sum of extra
weights resulting from non-repulsive (N-R) and repulsive (R) mixtures with a maximum number of
clusters equal to six under different synthetic data scenarios

n=100 n=1000
1 Ila IIb IIla IIIb IV 1 Ila I1Ib Illa IIIb IV

K-L divergence

N-R 005 003 007 005 008 022 000 001 001 000 001 0-02
0-03 001 002 002 003 004 000 000 000 000 0-00 0-00

R 0-03 0-08 0-09 0-07 009 024 001 001 001 001 001 003
0-02 002 003 003 003 004 000 000 000 000 000 0-00

Misclassification

HCT 012 011 041 012 0-78 021 045 042 014 042 009 0-20

N-R 068 026 006 017 005 013 065 024 003 014 0-02 0-19
0-09 0-10 0-05 0-09 0-06 0-05 0-11 0-08 0-04 0-08 0-03 0-02

R 0-06 009 0-00 0-05 000 009 005 008 000 003 000 018
0-05 0-04 0-02 0-03 0-01 003 005 0-02 0-02 0-03 0-01 0-01

Sum of extra weights

N-R 030 021 009 016 0.07r 013 030 021 003 016 003 0-29
0-10 011 0-07 009 o007 o007 011 011 004 010 003 0-03

R 0-01 001 o001 001 001 008 001 000 000 000 000 026
0-00 o001 001 o001 001 005 001 000 000 000 000 0-03

4 Real data

We assessed the clustering performance of the proposed method on a real dataset. This dataset
consists of 150 observations from three different species of iris each with four measurements. This
dataset was previously analyzed by [16] and [17] proposing new methods to estimate the number of
clusters based on minimizing loss functions. They concluded the optimal number of clusters was
two. This result did not agree with the number of species due to low separation in the data between
two of the species. Such point estimates of the number of clusters do not provide a characterization
of uncertainty in clustering in contrast to Bayesian approaches.

Repulsive and non-repulsive mixtures were fitted under different choices of upper bound on the
number of components. Since the data contains three true biological clusters, with two of these
having similar distributions of the available features, we would expect the posterior to concen-
trate on two or three components. Posterior means and standard deviations of the three highest
weights were (0-30, 0-23,0-13) and (0-05,0-04, 0-04) for non-repulsive and (0-60, 0-30,0-04) and
(0-04,0-03,0-02) for repulsive under six components. Clearly, repulsive priors lead to a posterior
more concentrated on two components, and assign low probability to more than three components.
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Figure 3: Posterior density of the total probability weight assigned to more than three components
in the Iris data under a max of 6 or 10 components for non-repulsive (6:solid, 10:dash-dot) and
repulsive (6:dash, 10:dot) mixtures.

Figure 3 shows the density of the total probability assigned to the extra components. This quantity
was computed considering the number of species as the true number of clusters. According to
figure 3, our repulsive prior specification leads to extra component weights very close to zero
regardless of the upper bound on the number of components. The posterior uncertainty is also
small. Non-repulsive mixtures assign large weight to extra components, with posterior uncertainty
increasing considerably as the number of components increases.

Discussions

‘We have proposed a new repulsive mixture modeling framework, which should lead to substantially
improved unsupervised learning (clustering) performance in general applications. A key aspect is
soft penalization of components located close together to favor, without sharply enforcing, well sep-
arated clusters that should be more likely to correspond to the true missing labels. We have focused
on Bayesian MCMC-based methods, but there are numerous interesting directions for ongoing re-
search, including fast optimization-based approaches for learning mixture models with repulsive
penalties.
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