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Abstract

We develop continuous-time probabilistic mod-
els to study trajectory data consisting of times
and locations of user ‘check-ins’. We model
the data as realizations of a marked point pro-
cess, with intensity and mark-distribution mod-
ulated by a latent Markov jump process (MJP).
We also include user-heterogeneity in our model
by assigning each user a vector of ‘preferred lo-
cations’. Our model extends latent Dirichlet allo-
cation by dropping the bag-of-words assumption
and operating in continuous time. We show how
an appropriate choice of priors allows efficient
posterior inference. Our experiments demon-
strate the usefulness of our approach by compar-
ing with various baselines on a variety of tasks.

1. Introduction
With the advancement of sensing technologies, trajectory
data are being collected in scenarios such as traffic monitor-
ing (Wang et al., 2014; Westgate et al., 2013), surveillance
systems (Wang et al., 2011), and mobile and social network
check-in data (Zhang et al., 2014; Gao et al., 2012a). A tra-
jectory is a path taken by an object over a time period, with
data consisting of observations at a discrete, often irregular,
sequence of times. In the simplest case, each observation
consists of a time and a location (latitude and longitude); it
can also include activity and user information. The obser-
vations may be noisy, due to measurement error or human
perturbation. In many cases, the trajectory sample points
are sparse, with large gaps between bursts of observations.
Furthermore, the rate of observations can vary along the
trajectory, and can depend on the the user and the location
of the trajectory.
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Figure 1. Visualizing
the check-in loca-
tions (in the US)
of 500 random
users from the
FourSquare dataset
(Gao et al., 2012a).

Our focus in this paper is on user check-in data. In partic-
ular, we consider a dataset of FourSquare check-ins (Gao
et al., 2012a) (see Figure 1). This smartphone-based social
media tool allows individuals to publicly register visits to
interesting places: a check-in is a record of such a visit,
consisting typically of a timestamp, a location (latitude and
longitude), and additional information such as the name of
a place, a category (e.g. restaurant or museum) or a user-
rating. Unlike traditional trajectory data, check-in observa-
tions are not passively collected (say, every hour); instead,
the times of observations are informative about user behav-
ior. Consequently, observation times are irregular and typ-
ically alternate between bursty and sparse episodes. Our
data is at the individual level, consisting of snapshots of in-
dividual trajectories over time intervals. The observations
of each individual form a sequence of check-in times, each
with an associated location.

Given a collection of trajectories from the same spatial do-
main, it is of interest to learn shared underlying patterns.
For check-in data, such information can include activity
hotspots (e.g. big cities, tourist attractions, restaurants),
transition rates across different hotspots and nature of ac-
tivity in different regions. The shared patterns can assist
recommendation systems, managing traffic, identifying un-
usual activity patterns, understanding factors that lead to
the success or failure of a business, as well as just to sum-
marize a large collection of activity data.

We approach the problem of identifying shared patterns
by proposing a realistic generative model for the check-in
data and performing posterior inference for the model. We
model check-ins as local excursions about a latent state:
e.g., one might visit a restaurant in Chicago, Chicago be-
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ing the latent state, and the restaurant coordinates giving
the check-in location. Generatively, at the start of the ob-
servation window, the individual starts in a random state,
stays there for a random period of time, checks in a ran-
dom number of times while in that state, and stochastically
transitions to a new state. When checking in, a random
location is attached to the individual.

One possible generative model is a state-space model
(Fuller, 1996). Discrete-time models of dynamical systems
are widespread in machine learning and statistics: starting
with the simple hidden Markov model (Rabiner, 1989), ex-
tensions like dynamic Bayesian networks (Murphy, 2002),
infinite-state HMMs (Beal et al., 2001; Teh et al., 2006),
factorial Markov models (Ghahramani & Jordan, 1997)
have been proposed and applied. These models are how-
ever unsuitable for the check-in data we consider, which
contains bursty, asynchronous observations over long in-
tervals of time. As we demonstrate in our experiments,
accurate prediction requires artificial discretization at high
temporal resolution, incurring expensive computation.

In this work we apply ideas from continuous-time Markov
jump processes (MJP) to model the check-in data. Unlike
their more common discrete-time counterparts, such mod-
els are ideal for bursty, asynchronous observations. While
MJPs have found applications in modeling point data (e.g.
event attendance (Ihler et al., 2007), genetics (Fearnhead
& Sherlock, 2006)), there is little work applying MJPs to
spatio-temporal phenomena like check-in data. One of our
contributions is to apply and extend MJPs to construct a
marked Markov modulated Poisson process model for such
data. Another contribution is to introduce heterogeneity
across point processes via user-specific ‘preference’ vec-
tors. The result can be regarded as an extension of latent
Dirichlet allocation (LDA) (Blei et al., 2003) by dropping
the bag-of-words assumption and operating in continuous
time. We also introduce a convenient conjugate prior that
allows efficient posterior inference by extending existing
Markov chain Monte Carlo (MCMC) methods. We apply
our model to the FourSquare check-in data, visualize the
shared pattern inferred by the model, and demonstrate its
advantage over HMM and LDA for data-exploration, pre-
diction, and anomaly detection. More generally, our model
is applicable to other types of time-stamped sequence data.

Related work: There has been much work on learn-
ing shared patterns of trajectories using model and
optimization-based approaches. By treating trajectories as
documents of exchangeable words, topic models such as
latent Dirichlet allocation (LDA) (Blei et al., 2003), origi-
nally proposed to learn shared topics from documents, are
well-suited for this task. Wang et al. (2011) extended the
hierarchical Dirichlet Process, a nonparametric variant of
LDA, for trajectories from videos and other surveillance

devices. The topics learned by their model represent se-
mantic regions of different activities. These work ignore
sequential information in the trajectories. Zhang et al.
(2014) approach the problem of extracting semantic se-
quential patterns from user check-in trajectories via a two-
step optimization algorithm that uses category information
of each check-in location; see also (Giannotti et al., 2007;
Zheng et al., 2009) on discovering sequential patterns from
trajectory data. Other shared patterns of trajectories that
have been studied include flock (Laube & Imfeld, 2002),
convoy (Jeung et al., 2008), and swarm (Li et al., 2010).
Unlike the Bayesian approach that we take, these methods
do not provide uncertainty in estimates, and are less capa-
ble of dealing with noise or missing data.

Various forms of discrete-time Markov models were used
to model trajectory data. For example, Mathew et al. (2012)
presented a hidden Markov model predicting the region of
future locations based on previous visits to other locations.
Gao et al. (2012b) considered both spatial and temporal in-
formation in their Markov model for location prediction.
See also (Alvarez-Lozano et al., 2013; Xue et al., 2015).

Other related work includes Lichman & Smyth (2014),
who applied a mixture of kernel density estimation ap-
proach on check-in data collected from Twitter and
Gowalla for modeling individual-level location patterns,
and Westgate et al. (2013), who used a Bayesian model on
trajectories to estimate ambulance travel times.

2. Markov jump processes
A probabilistic mechanism well-suited for check-in data is
the Markov jump process (MJP) (Çinlar, 1975). MJPs are
the simplest processes for creating continuous-time exten-
sions of a discrete-time Markov chain, and a realization
is a piecewise constant function transitioning between N
states. Changes in state can correspond to changes in lo-
cation or activity. Such a continuous-time model allows us
to effectively model the fact that typical trajectories make
only few transitions over an extended period (e.g. a year),
while accurately representing the actual transition times.

Formally, an MJP is parametrized by an initial distribution
over states π, and an N ×N rate matrix A. Entering state i
triggers a race to jump to a new state j 6= i, with transitions
from i to j having rate Aij . Effectively, for each candidate
new state j, a waiting time is sampled from an exponential
distribution with rate Aij . Suppose state j0 has the min-
imum waiting time ∆tj0 . The system moves into state j0
after ∆tj0 time. The process then repeats. Note that the off-
diagonal elementsAij are transition rates and are thus non-
negative numbers. The negative of the diagonal element
Aii gives the rate of leaving state i (i.e.Aii = −

∑
i 6=j Aij)

so that the rows of A sum to 0. An equivalent way of sam-
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Figure 2. 3-state mMMPP with
rates (λ1, λ2, λ3). Crosses are
check-ins, having 2-d marks
from a 2-d normal with state-
dependent mean and covariance.

pling an MJP trajectory is to successively first sample the
time of the next transition from an exponential distribution
with rate |Aii|, and then sample a new state j 6= i with
probability proportional to Aij .

Modeling check-in data with MJPs: The data we con-
sider consists of a collection of partially-observed trajec-
tories over an interval [0, Tend], each corresponding to a
different ‘user’ (we will say users or trajectories depend-
ing on the context). We envision each trajectory as a
piecewise-constant realization of an MJP. The piecewise
constant function is characterized by the sequence of jump
times T (including the start and end times 0 and Tend), and
the value of the state at these times, S. We write this as
S(t) = (S,T) = ((s0, t0), (s1, t1), . . . , (s|T|, t|T|)), with
t0 = 0 and t|T| = Tend. We do not observe this sequence;
instead, we have measurements at a finite random set of
times (the user ‘check-ins’). We allow the rate of check-ins
to depend on the state of the MJP, and assign each state s
a positive output rate λs, s = 1, 2, ..., N . Over intervals
where the MJP is in state s, outputs are produced accord-
ing to a Poisson process with rate λs. That is, the check-in
times in state s are uniformly distributed over the time in
state s. Altogether, the set of check-in times, H , forms a
realization of an inhomogeneous Poisson process called a
Markov-modulated Poisson process (MMPP).

Check-ins are characterized not just by time but also by lo-
cation (which we call a ‘mark’). With each state s, we as-
sociate a mean µs and a positive definite covariance matrix
Σs, and model check-in locations as draws from a Gaus-
sian with mean and covariance determined by the current
state. The observations form a realization of a marked Pois-
son process, with an MJP-distributed intensity. We call this
a marked Markov-modulated Poisson process (mMMPP);
see Figure 2. While a location informs about which state
an individual is in, it does not uniquely determine the state:
in the space of locations, high-probability regions of states
may not be geographically disjoint. The overall model is

S(t) ∼ MJP(π,A), (1)
H ≡ {h1, h2, . . . , h|H|} ∼ PoissonProcess(λS(t)),

∀i ∈ {1, . . . , |H|} xi ∼ N (µS(hi),ΣS(hi)).

Here, the MJP state has two roles: it sets the rate at which
the user produces check-ins as well as the distribution over
locations. Usually this makes sense: different locations
determine the rate at which the user produces check-ins.
Sometimes, the check-in rate might just depend on the user,

Figure 3. Models without (left)
and with (right) preference vec-
tors. For the latter, a high pref-
erence for state A boosts in-
coming rates to A. A similar
but smaller effect exists for C

A

B C

A

B C

or involve interaction between user and location.

We take a Bayesian approach, placing priors on the un-
known π,A and λ. We place a Dirichlet prior on π and
Gamma priors on the λ’s and the off-diagonal elements
of A. As the rows of A add to 0, the off-diagonal el-
ements of A determines A, and we write this prior as
A ∼ oGamma(α1, α2). We place a normal-inverse-
Wishart prior (NiW) on the observation distribution param-
eters (µ,Σ) of each state. We show later that these priors
are all conjugate and allow efficient Gibbs sampling.

User heterogeneity: The model above assumes trajecto-
ries are exchangeable across users (i.e., all trajectories are
drawn from the same distribution). This is unrealistic; as-
suming states correspond to geographical regions, differ-
ent users can favor different states (corresponding to where
they live, work, or where their friends live). In a realistic
scenario, the rate at which a user enters a state is deter-
mined by two factors: the preferences of the user and the
popularity of that state. From the inference perspective, it
is of interest to understand both global factors that drive
transitions, as well as user-specific preferences. From the
prediction perspective, it is important to allow individuals
to deviate from global trends.

To capture both the global and user-level preferences, we
propose a new prior over the rate matrix. We have N
states, with a global rate-matrix A controling the rate of
transitions across states. Every user u additionally has an
N -dimensional preference vector Bu of nonnegative ele-
ments, giving user-specific state preferences. For this user,
the rate of transitioning from state i to j is AijBuj , the
product of the global rate of tranition with the user’s prefer-
ence of state j (see Figure 3). This defines the off-diagonal
elements of the effective rate matrix Ã, i.e., Ãij = AijBuj ;
again, the diagonal elements are set so that the rows add up
to 0. We place Gamma priors on the user-preferences Buj
and the transition rates Aij . We call this MJP model with
user preferences the preference-MJP model.

Our model relates closely to latent Dirichlet allocation
(LDA), or topic, models. We can regard each individual
check-in sequence as a document, and the state-specific
distributions as ‘topics’. Just as each document has its own
distribution over topics, now, each individual has a vector
of state preferences. Unlike LDA which assumes a docu-
ment to be a bag-of-words, we model both the sequential
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Figure 4. MCMC inference for MJPs

and temporal nature of check-in data. Note that the user
preference vector in our model is unnormalized, and thus
encodes not only user preferences but also transition rates.

3. Inference
We carry out inference via Markov chain Monte Carlo
(MCMC), repeating two Gibbs steps: sample user trajec-
tories given current model parameters, and then update pa-
rameters given trajectories. For the first step, we follow
ideas in (Rao & Teh, 2013; 2012), sampling a new trajec-
tory by running the forward-filtering backward-sampling
algorithm (FFBS) (Frühwirth-Schnatter, 1994) on a ran-
dom discretization of time. In every Gibbs iteration, this
discretization is resampled conditional on the old trajec-
tory and the current parameters. More precisely, for some
Ω > max(−Aii), sample a set of times from a Poisson pro-
cess with piecewise-constant intensity Ω+As(t)s(t). These
times, along with the transition times of the old trajectory
form a random discretization of time (the middle of Fig-
ure 4). A new trajectory is sampled by running FFBS over
these times, with the Markov chain having transition ma-
trix (I + 1

ΩA) and initial distribution π (the right of Fig-
ure 4). Note that for MJP with user preferences, the matrix
A above is replaced by the effective rate matrix Ã.

Conditioned on a discretization of time, the MJP state re-
mains constant between two successive candidate times,
with all observations lying in that interval determining the
likelihood of that state. In our case, given observations
(H∆, X∆) in an interval of length ∆, state s has likeli-

hood
(
λ
|H∆|
s exp(−λs∆)

)(∏|X∆|
i=1 N (x∆

i |µs,Σs)
)

. The
first term corresponds to the number of check-ins, and the
second to their locations. Overall, sampling trajectories is
simple and efficient, and while we have adapted it to the
marked Poisson case, we refer the reader to (Rao & Teh,
2013) for details. We highlight that our inference algorithm
does not require inefficient rejection sampling algorithms
or expensive matrix exponentiation computations, unlike
work such as (Hobolth & Stone, 2009; Bladt & Sørensen,
2005; Fearnhead & Sherlock, 2006; Metzner et al., 2007).

Inference over parameters and other latent variables also
turns out to be straightforward for our choice of priors. For
an MJP trajectory S(t) = (S,T) define ∆i = (ti+1 − ti)
as the ith waiting time. Then S(t) has likelihood

p(S(t)) = πs0

|T|−2∏
i=0

|Asisi | exp(−|Asisi |∆i) ·
Asisi+1

|Asisi |


exp(−|As|T|−1s|T|−1

|(∆|T|−1)) (2)

Noting that |Aii| =
∑
j 6=iAij , we then have

p(S(t)) = πs0

|T|−1∏
i=0

∏
j 6=si

exp(−Asij∆i)

 |T|−2∏
i=0

Asisi+1

Letting Wi be the total amount of time spent in state i, and
nij the number of transitions from i to j,

p(S(t)) = πs0

N∏
i=1

∏
j 6=i

exp(−AijWi) · (Aij)nij (3)

This likelihood is conjugate to Gamma priors on the Aij ,
making posterior sampling straightforward. Note that our
prior is slightly different to that from (Rao & Teh, 2013)
(who used a Gamma prior on the diagonal of A and un-
related Dirichlet priors on transition probabilities). The
advantage of our prior is that it also allows easy sam-
pling for the MJP model with user preference vectors.
Recall that for this model, the Aij’s are replaced by the
product AijBj . The likelihood now becomes p(S(t)) =

πs0
∏N
i=1

∏
j 6=i exp(−BjAijWi) · (BjAij)

nij . Now, a
Gamma prior on Aij is conditionally conjugate given Bj
(and similarly for Bj given A). This results in a simple
and efficient Gibbs sampler: 1) given the global rate ma-
trix A and the preference vector B, calculate the effective
rate matrix, and sample a new trajectory following (Rao &
Teh, 2013), 2) given the trajectories and preference vec-
tors of each user, sample the Gamma-distributed elements
of A, and 3) given A and the user trajectories, sample the
Gamma-distributed user preference vectors.

4. Experiments
We use a dataset of FourSquare check-in sequences from
year 2011. Each check-in has a location (latitude and lon-
gitude) and a time stamp. The dataset was originally col-
lected by (Gao et al., 2012a) to study location-based so-
cial networks. It has 8967 users, each having 191 check-in
records on average. We only consider check-ins inside a
rectangle containing the United States and parts of Mexico
and Canada (see Figure 1). There is not much prior sta-
tistical modeling specifically for check-in data: one model
we compare with is a variant of latent Dirichlet allocation
(LDA) (Blei et al., 2003). Here, each check-in location is
a word, each check-in sequence is a document, and a topic
is represented as a Gaussian distribution over check-in lo-
cations. The LDA topics correspond to the states in our
MJP models, and user topic-distributions give the personal
preference of each user. LDA does not model sequential in-
formation and observation rates of the check-in sequences.
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Figure 5. Visualization
of representative MJP
states.

current state next states - probability
Bay Area Napa-Sacramento - 0.30; LA - 0.19
Florida New York City - 0.19; Chicago - 0.15

Los Angeles Bay Area - 0.54; New York City - 0.15

Table 1. Most likely next states learned from transition rate matrix
A of the preference-MJP model. States are manually labeled.

(a) (b)

Figure 6. (a) Most attractive states (NYC, Chicago, San Fran-
cisco); (b) Most stable states (Charlotte, New Orleans, Seattle).

We perform most of our experiments using data at the na-
tional scale, but also look at a different granularity: check-
ins only from Florida. In our experiments, we set the num-
ber of states and topics to 50 for the national data and 30 for
the Florida data. In the national-scale MJP models, Florida
corresponds to a single MJP state, while in the Florida-
scale MJP models, each major city in Florida corresponds
to a state. We fit all models using data from 500 random
users, running the MCMC samplers for 1500 iterations and
retaining the last 500 samples for the evaluation experi-
ments described below. We use the preference-MJP model
for the data visualization and exploration experiments.

Visualization: We first visualize representative MJP
states on the US map, plotting all check-ins assigned to
these states in Figure 5. Most states are local, correspond-
ing to activity centers such as New York city (NYC) and
Chicago. Information about the flow between states is con-
tained in the rate matrix A, whose normalized rows give
the probabilities of the next state. Table 1 gives a few
examples. The diagonal entries of A (the sum of the off-
diagonal elements in each row) show how soon users leave
each state, or how long a typical visit to a state is. The total
incoming rate of each state (sum of off-diagonal entries in
a column of A) is a good measure of the “attractiveness” of
the state. Figure 6(a) shows the top 3 “attractive” states in
the US. Again, these correspond to NYC, Chicago, and the
Bay area. Figure 6(b) shows the top 3 “stable” states, which

(a) basic MJP (b) preference-MJP

(c) flow for user 1 (d) flow for user 2

Figure 7. Flow between MJP states. Top row shows the global
rate matrix A for (a) MJP and (b) preference-MJP. Bottom row
shows user-specific flows for 2 users. Linewidth indicates flow.

top preferences (rate/probability)
user 1 Seattle (7.92/0.207); Michigan (5.11/0.134)
user 2 NYC (11.06/0.186); Seattle (4.64/0.098)

Table 2. Top preferences of two users learned by the preference-
MJP model. The numbers in brackets are corresponding values in
the user’s preference vector/normalized preference vector.

have the longest typical visit and correspond to the rows of
A with the minimum sums of off-diagonal entries. These
states roughly are Charlotte, New Orleans and Seattle.

Figure 7(top row) shows the population flow according to
the rate matrix A for (a) the basic MJP and (b) preference-
MJP. For both, we have emphasized only large rates. The
basic MJP has a denser rate matrix, connecting all urban
centers in the US. By contrast, the global rate matrix for
the preference-MJP model is much more sparse, since the
preference vector of each user can incorporate user-specific
transitions that might have low probability globally. Fig-
ure 7(bottom row) plots the effective transition rates from
two users, which are quite sparse. Table 2 shows the top
preferences of two more random users. Note that the user
preference vectors learned by the our model highlight the
“extra” preferences of users that deviate from the global
trend. Such user-specific information allows better predic-
tion about future activity than the basic MJP model. We
investigate this in the next subsection. Finally, we visualize
observation rates of states in the preference-MJP model in
Figure 8. We take the last MCMC sample of the preference-
MJP model parameters, and plot the observations assigned
to each state in the same color from a spectrum of col-
ors, where high rates correspond to red and low rates cor-
respond to blue. As expected, large cities and tourism
hotspots have higher rates of check-ins.
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Figure 8. Different
observation rates
of the preference-
MJP states. Rates
increase from
blue to red.

(a) (b)

Figure 9. Observations assigned
to the LDA topic (a) and the
preference-MJP state (b) covering
NYC.

Figure 10. MJP states of the
preference-MJP model on Florida
check-in data. Roughly corre-
sponds to Jacksonville, Orlando,
Tampa, Miami and Key West.

For LDA, we observe that many of the 50 topics are
“empty” and have few associated observations. The Gaus-
sians of the remaining topics have larger variances com-
pared to preference-MJP. For example, Figure 9 visualizes
the LDA topic and preference-MJP state covering NYC.
Clearly, the preference-MJP state is more fine-grained than
the LDA topic, leading to better interpretation and predic-
tion. Indeed, our preference-MJP model takes advantage of
the sequentiality and check-in rate information embedded
in the data while LDA only uses spatial information. The
user topic distribution in LDA favors as few topics to ex-
plain each check-in sequence as possible, while preference-
MJP can afford more states per check-in sequence as long
as the transitions between them have high probabilities.

For the preference-MJP model trained on only Florida
check-ins, the MJP states correspond to major urban cen-
ters such as Orlando, Miami, Key West, etc. See Figure 10
for a visualization of popular states. Figure 11 visualizes
the observation rates of states in the same way as the na-
tional case. The rate matrix A also embeds interesting in-
formation. For example, the highest-rate destination from
Orlando is Tampa, and the highest incoming rates of Key
West are from Miami, the Northwest coast of Tampa and
the area around Lake Jackson. See Figure 12 for the global
rate matrix and the flow for a single user, whose major ac-
tivities are near Tampa, Miami and Key West.

Prediction: To evaluate our model, we consider a binary
classification task: given all check-ins of a user until a fi-
nal check-in at time t, will the user make a new check-in
in some region in the time interval [t′, t′ + ∆t] for some
t′ ≥ t? We call t′−t the prediction gap and [t′, t′+∆t] the
prediction interval. In our experiments, we set ∆t = 0.01

Figure 11. Different observation
rates of the preference-MJP
states in Florida. Rates increase
from blue to red.

Figure 12. Global
rate matrix (left)
and flow for a user
(right) for the Florida
dataset with the
preference-MJP.

year, and vary the prediction gap t′ − t. Our prediction re-
gion is a rectangle [40.544, 40.944]× [−74.033,−73.833]
that roughly covers New York city.

To construct a test case, we first select a user and randomly
pick an index i in the second half of the user’s check-in
sequence. We assume the first i check-ins of this user are
known. To make the prediction task harder, we choose test
users from those whose check-in sequences have sufficient
variance (at least a quarter of all-data variance). We cre-
ate three test datasets with prediction gaps 0, 1/365, 0.1
years, each with 100 random test users with 50 positive
cases (check-in in the prediction region during the predic-
tion interval). Each positive test case is selected by first
choosing a random user and then choosing a random index
i in the second half of the user’s check-in sequence such
that the prediction interval contains a check-in in the pre-
diction region (if it exists); else this will be a negative.

To make predictions using the preference-MJP model, we
use the last 500 samples of the MCMC sampler. For each
test user, we run the sampler on the known portion ob-
servations to obtain distributions over user-specific vari-
ables. We then simulate the model forward to make pre-
dictions. For every test user, we perform 500 iterations of
Gibbs sampling of the user’s hidden trajectory and pref-
erence vector, and use the last 200 samples for prediction.
For each of the 200 trajectory samples, we record a positive
if any extrapolated check-in within the prediction interval
lands in the prediction region. The prediction score of a
test user is the fraction of positive samples. Similarly, for
LDA, we first estimate the number of observations in the
prediction interval as nI = n∆t/t, n being the number of
check-ins of the test user in the interval [0, t]. We then esti-
mate the topic preference distribution of the test user using
observations up to time t and simulate nI observations us-
ing the generative procedure of LDA. We record a positive
if any of the nI observations lies in the prediction region,
and the prediction score is the fraction of positive records.

We also compare with a heuristic prediction method, which
we call the history method. Given a test user, let nα denote
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Figure 13. Comparison of
ROC curves of the predic-
tion methods with the gap
0 test data set.
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preference-MJP
MJP
LDA
history-last-5

method\prediction gap 0 1 day .1 year
preference-MJP 0.947 0.876 0.822

MJP 0.927 0.870 0.713
LDA 0.794 0.782 0.759

history-all 0.838 0.801 0.767
history-last-1 0.810 0.790 0.710
history-last-5 0.835 0.813 0.792

Table 3. AUCs of MJP models and history heuristics on predicting
if a user will check-in in NYC for different prediction gaps.

the number of check-ins that falls in the prediction region in
time interval (t−α, t], where t is the last known observation
time. The history method then computes the score of a test
user as nα∆t/α. We consider three settings, one with α =
t, namely, considering the whole known history of the user
(history-all); one with α→ 0, namely, considering only the
last known check-in (history-last-1); and lastly, α such that
the last 5 known check-ins are considered (history-last-5).

Figure 13 shows the receiver operating characteristic
(ROC) curves of our models for the 0-prediction-gap task.
For clarity, we only plot the curves for the MJP models,
LDA and history-last-5; the area under curve (AUCs) of all
methods are shown in Table 3. In all cases, the preference-
MJP model performs the best. The advantage of the MJP
models is most significant when the prediction gap is small
because it exploits temporal information via the Marko-
vian structure of the trajectories. As the prediction gap
increases, the performance of the MJP model deteriorates,
essentially using just the last check-in to predict the future
check-ins. By contrast, the preference-MJP model uses the
users’ known check-ins to learn their preference vectors,
which combined with global information from the training
data makes more accurate predictions. The LDA model ig-
nores time and sequential information in the data, harm-
ing performance. Of the history heuristics, the history-
last-5 performs best, striking a balance between the other
two extremes. Interestingly, although LDA uses user-level
history and global spatial information, it does worse than
the history-all heuristic, which only considers user-level
history. This indicates that LDA topics may have over-
smoothed spatial patterns of individual users.

The above task may be unfair to LDA which does not
model observation rates. Thus we also compare preference-

method\prediction gap 0 1 day .1 year
preference-MJP 0.190 0.168 0.253

LDA 0.252 0.208 0.291

Table 4. Absolute errors for predicting the probability of check-in
in NYC with the prediction interval being .01 year and the predic-
tion gaps being 0, 1 day or .1 year.

method\prediction gap 0 1 day .1 year
preference-MJP 0.885 0.829 0.801

LDA 0.840 0.806 0.756
history-all 0.851 0.782 0.773

history-last-1 0.670 0.720 0.680
history-last-5 0.772 0.766 0.750

Table 5. AUCs predicting check-ins in Orlando from Florida data.

MJP and LDA on a variant of this task: instead of predict-
ing whether a new check-in will be made in NYC in the
prediction interval, predict the probability of a check-in in
NYC in a given time interval conditioned on there being
a check-in in that interval. We use the fraction of simu-
lated check-ins in the prediction region as the prediction
score. This prediction task is more difficult than before, but
our preference-MJP model still outperforms LDA. Table 4
shows the average prediction errors of the two models.

Finally, we repeat the binary version of the prediction task
for the Florida data, with the prediction region as down-
town Orlando, and with the same prediction gaps. Table 5
shows the various AUCs, and again, our model does best.

Anomaly detection: Anomaly detection involves detect-
ing unusual user behaviour, and is important to detect fraud
and identity theft. Anomalous behaviour might not involve
obvious changes like a different distribution over locations
or check-in rates, instead involving more subtle changes in
patterns, e.g. a user choosing a different route to get to a lo-
cation. Here, we use 100 random check-in sequences from
the FourSquare dataset, of which 10 are anomalous. We
obtain an anomalous sequence by randomly permuting lo-
cations of the second half check-ins of a random sequence,
with the time stamps unchanged and sorted.

Given a check-in sequence, we obtain 200 posterior sam-
ples of the preference vectors from the first half and the sec-
ond half. These samples are averaged to get the mean pref-
erence vectors for the two halves. Then the anomaly score
of the sequence is set to the Euclidean distance between the
two preference vectors normalized by the L2 norm of the
preference vector of the first half. The intuition for this is
that the preference vector captures information about time
spent at each state. On the other hand, the preference distri-
butions over topics in the LDA model is not useful for this
task since LDA treats check-ins as bag-of-words.
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classifier AUC classifier AUC
preference-MJP 0.864 grid-frequency 0.543
grid-wait-time 0.688 average-jump 0.713

Table 6. AUCs of classifiers for anomaly detection.

Figure 14. ROC curves
of the preference-MJP
based classifier and a
histogram based classi-
fier (with 50× 50 grid)
for detecting anoma-
lous trajectories.
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The only model for anomaly detection we are aware of is
from (Ihler et al., 2007), though it was not designed for
our choice of anomaly. We implement a variation of their
model as follows: construct a uniform grid over the spa-
tial domain and count check-ins in each grid cell for the
two halves of the sequence. Then, compute the anomaly
score as the Euclidean distance between the normalized
frequency vectors of the two halves. We call this grid-
frequency; Ihler et al. (2007) use a kernel density estimate
instead. We also use two heuristic baselines. The first
(called grid-wait-time) also constructs a uniform grid over
the spatial domain, computes the average waiting time be-
tween consecutive check-ins in each grid cell, and com-
putes the Euclidean distance between the grid average wait-
ing time vectors of the two halves. The final baseline
(called average-jump) computes the average distance be-
tween two consecutive check-ins for each half of the se-
quence. The anomaly score is the normalized difference
between the two distances.

Figure 14 shows the ROC curves of our preference-MJP
based classifier and the baselines (see Table 6 for AUCs).
For the baselines, we tried different grid sizes and a 10×10
grid achieves the best AUC. Clearly, the preference-MJP
based classifier outperforms the other baselines. This fol-
lows from using spatial, temporal, as well as sequential in-
formation in a coherent probabilistic way; each of the base-
lines uses just one of these pieces of information.

Discrete vs. continuous-time modeling: A simple al-
ternative to the continuous-time MJP is the discrete-time
hidden Markov model (HMM). This involves discretizing
time into intervals of equal width δ, with the state remain-
ing fixed over each interval, and evolving according to a
Markov chain. Inference over the latent state given obser-
vations can be carried out with the usual forward-filtering
backward-sampling algorithm that formed part of our MJP
inference algorithm. A coarse discretization can result in
check-ins over distant locations falling into the same in-
terval. Since the latent state remains fixed over each time

Figure 15. Trade-off
between training
time and prediction
accuracy for 4 dis-
cretization levels in
the HMM model.
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interval, a smaller discretization level models the data bet-
ter. However, too fine a discretization can result in a
long Markov chain and expensive computations. Our MJP
model allows a few precisely located state-trasitions and
strikes a good trade-off between efficiency and accuracy.

We consider four different discretization levels δ ∈
{0.1, 0.03, 0.01, 0.004}(year). For each, we divide the ob-
servation interval into T/δ time intervals, and estimate
the state using FFBS. We place conjugate Dirichlet pri-
ors on the rows of the Markov transition matrix, allow-
ing inference over the model parameters as well. For each
discretization-level, and for the MJP, we evaluate model
performance using our first prediction task . We also cal-
culate the time required to run 1500 iterations of MCMC
for training. Figure 15 shows the trade-off between train-
ing times and prediction accuracies (represented by AUC)
of the HMM with the different discretization levels and the
MJP, using the test datasets of prediction gaps 0 and 0.05
year. We can see that the MJP achives a good balance be-
tween training time and performance. This arises not only
because it learns an effective granularity, but also because it
allows this discretization-level to vary over the observation
interval according to the observations.

5. Discussion
There are many interesting extensions to the work we pre-
sented here. While we fixed the number of states a priori,
a natural extension learns this number by leveraging ideas
from the nonparametric Bayes and Dirichlet process litera-
ture. This is related to extensions of models like (Saeedi &
Bouchard-Côté, 2011) as well. There are other approaches
to user heterogeneity that we have not included here: mix-
ture models sharing rate matrices and mixture models that
cluster preference vectors. It is also interesting to look at
more flexible approaches, where user heterogeneity is de-
termined by both the source and destination states. Finally,
it is of interest to incorporate user-information (e.g., age,
sex, occupation) as well as friendship networks that are typ-
ical of such datasets.
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